Multi-robot formations for area coverage in space applications

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.advisor Nakasuka, Shinichi
dc.contributor.advisor Taipalus, Tapio
dc.contributor.author Leitner, Jürgen
dc.date.accessioned 2012-03-06T13:34:12Z
dc.date.available 2012-03-06T13:34:12Z
dc.date.issued 2009
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/3053
dc.description.abstract This thesis presents two algorithmic implementations of multi-robot formation control for the area coverage problem. It uses a space exploration scenario, with a marsupial robot society, for tasks like mapping, habitat construction, etc. The solutions are though applicable to a wider range of applications, since area coverage is seen as one of the canonical problems in multi-robot application. Starting with an overview of multi-robot systems in space applications, both currently in use and planned for the near future, it then presents the two algorithms and their implementation in C++: (i) a vector force based implementation and (ii) a machine learning approach. The second is based on an organizational-learning oriented classifier system (OCS) introduced by Takadama an evolution of Holland's learning classifier system (LCS). To ease the development, testing and evaluation of the control algorithms a simulator, named SMRTCTRL, was implemented during a 3 months research stay at the University of Tokyo. The vector-based control approach was tested using a multi-robot society of LEGO Mindstorms Robots and a comparison of the two algorithm was done with the help of the simulator. en
dc.format.extent 99
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher Helsinki University of Technology en
dc.publisher Teknillinen korkeakoulu fi
dc.title Multi-robot formations for area coverage in space applications en
dc.type G2 Pro gradu, diplomityö fi
dc.contributor.department Automaatio- ja systeemitekniikan laitos fi
dc.subject.keyword space robotics en
dc.subject.keyword multi-robot cooperation en
dc.subject.keyword area coverage en
dc.subject.keyword machine learning en
dc.subject.keyword simulation en
dc.subject.keyword formation control en
dc.subject.keyword Learning Classifer Systems en
dc.subject.keyword LCS en
dc.identifier.urn URN:NBN:fi:aalto-201203071284
dc.type.dcmitype text en
dc.programme.major Automaatiotekniikka fi
dc.programme.mcode Aut-84
dc.type.ontasot Diplomityö fi
dc.type.ontasot Master's thesis en
dc.contributor.supervisor Halme, Aarne
dc.contributor.supervisor Hyyppä, Kalevi
dc.location P1 fi


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

My Account