Mapping microscale wetting variations on biological and synthetic water-repellent surfaces

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2017-11-27
Major/Subject
Mcode
Degree programme
Language
en
Pages
1-7
Series
NATURE COMMUNICATIONS, Volume 8, issue 1
Abstract
Droplets slip and bounce on superhydrophobic surfaces, enabling remarkable functions in biology and technology. These surfaces often contain microscopic irregularities in surface texture and chemical composition, which may affect or even govern macroscopic wetting phenomena. However, effective ways to quantify and map microscopic variations of wettability are still missing, because existing contact angle and force-based methods lack sensitivity and spatial resolution. Here, we introduce wetting maps that visualize local variations in wetting through droplet adhesion forces, which correlate with wettability. We develop scanning droplet adhesion microscopy, a technique to obtain wetting maps with spatial resolution down to 10 µm and three orders of magnitude better force sensitivity than current tensiometers. The microscope allows characterization of challenging non-flat surfaces, like the butterfly wing, previously difficult to characterize by contact angle method due to obscured view. Furthermore, the technique reveals wetting heterogeneity of micropillared model surfaces previously assumed to be uniform.
Description
Keywords
Scanning droplet adhesion microscopy, wetting, superhydrophobic, WATER-REPELLENT, micromanipulation, Robotics, automation
Other note
Citation
Liimatainen, V, Vuckovac, M, Jokinen, V, Sariola, V, Hokkanen, M, Zhou, Q & Ras, R 2017, ' Mapping microscale wetting variations on biological and synthetic water-repellent surfaces ', Nature Communications, vol. 8, no. 1, 1798, pp. 1-7 . https://doi.org/10.1038/s41467-017-01510-7