Title: | Simulating atomic force microscopy at the solid-liquid interface |
Author(s): | Tracey, John |
Date: | 2017 |
Language: | en |
Pages: | 110 + app. 44 |
Department: | Teknillisen fysiikan laitos Department of Applied Physics |
ISBN: | 978-952-60-7718-5 (electronic) 978-952-60-7717-8 (printed) |
Series: | Aalto University publication series DOCTORAL DISSERTATIONS, 222/2017 |
ISSN: | 1799-4942 (electronic) 1799-4934 (printed) 1799-4934 (ISSN-L) |
Supervising professor(s): | Foster, Adam S., Prof., Aalto University, Department of Applied Physics, Finland |
Subject: | Physics |
Keywords: | molecular dynamics, solid-liquid interfaces, Atomic force microscopy, image recognition |
Archive | yes |
|
|
Abstract:NC-AFM is an experimental technique that is capable of imaging, in principle, any surface at atomic resolution in any environment. Despite the clear advantages of NC-AFM, the biggest drawback is with regards to the interpretation of the results. Typically theoretical simulations are conducted to assist with this. A key component in linking theoretical simulations and the experimental results is the use of virtual machines. These aim to reproduce the experiment, allowing for a more complete simulation. The PyVAFM presented within, is such a virtual machine allowing users to reproduce any experimental setup or operational mode. It is fully open source, allowing future users to update the software with new cutting edge experimental components.
|
|
Parts:[Publication 1]: John Tracey, Filippo Federici Canova, Olli Keisanen, David Z. Gao, Peter Spijker, Bernhard Reischl, Adam S. Foster. Flexible and modular virtual scanning probe microscope. Computer Physics Communications, Volume 196, p. 429-438, Nov. 2015. DOI: 10.1016/j.cpc.2015.05.013 View at Publisher [Publication 2]: John Tracey, Keisuke Miyazawa, Peter Spijker, Kazuki Miyata, Bernhard Reischl, Filippo Federici Canova, Andrew L. Rohl, Takeshi Fukuma, Adam S. Foster. Understanding 2D atomic resolution imaging of the calcite surface in water by frequency modulation atomic force microscopy. Nanotechnology, Volume 27, Number 41, September 2016. DOI: 10.1088/0957-4484/27/41/415709 View at Publisher [Publication 3]: Hagen Söngen, Christoph Marutschke, Peter Spijker, Eric Holmgren, Ilka Hermes, Ralf Bechstein, Stefanie Klassen, John Tracey, Adam S. Foster, Angelika Kuhnle. Chemical Identification at the Solid-Liquid Interface. Langmuir, Volume 33, Pages 125–129, December 2016. DOI: 10.1021/acs.langmuir.6b03814 View at Publisher [Publication 4]: Kazuki Miyata, John Tracey, Keisuke Miyazawa, Ville Haapasilta, Peter Spijker, Yuta Kawagoe, Adam S. Foster, Katsuo Tsukamoto, Takeshi Fukuma. Atomistic Dissolution Model of Calcite in Water Revealed by High-Speed Atomic Force Microscopy. Nanoletters, Volume 17, Pages 4083–4089, June 2017 |
|
|
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Page content by: Aalto University Learning Centre | Privacy policy of the service | About this site