This thesis comprises the main findings of a study aiming to improve the performance of low-consistency refining. The following areas were studied: the reproducibility of the laboratory refiner used in the experiments; the refining characteristics of softwood kraft fibre fractions; and the effect of the refiner configuration and bar edge sharpness on fibre and handsheet properties.
Careful and regular estimation of no-load power is important for the reproducibility of a laboratory refiner's performance. The warm-up time affects the level of no-load power of the laboratory refiner. Thus, before recording the estimate of no-load power the refiner needs to warm up and approach steady state. At low 0.3 J/m intensity refining, already a 12% change in no-load power, which was caused by reduced warm-up time, was found to cause significant variability in the refining result.
In the refining of softwood kraft fibre fractions, optimising refining intensity is important since a fraction having shorter fibre length may have reduced load-carrying capacity. The short-fibre fraction did not tolerate the high intensity of 3.7 J/m as the original pulp and long-fibre fraction did. In addition, more severe fibre shortening of the short-fibre fraction started at lower intensity than what is typically expected for softwood pulp. The magnitude of the gap was found to depend on the type of fraction, with the short-fibre fraction forming a narrower gap than the original pulp and long-fibre fraction at a given intensity. The fraction-specific intensity and gap behaviour are believed to be related to the compressibility of fibre flocs under the stress exerted by the bar surfaces. The specific energy input determined the increase in fibre swelling which contributed to a higher sheet density and improved tensile strength.
When examining the differences in refining result between the disc and conical configuration, the conical configuration seemed to form a wider gap than the disc configuration when long-fibre softwood kraft was refined. The reason for this could not be determined. In addition, conical fillings shortened fibres less at medium and high intensity. The sharp bar leading edge of disc fillings was probably the reason for the more severe fibre shortening, which supports earlier findings that refining intensity and bar edge sharpness determine the degree of fibre shortening. By introducing a new method to study bar edge profile, new numerical information was gained on bar edge sharpness. A small calculated radius for the bar edge together with small size angular shaped profiles in the bar edge area appeared to cause the most severe fibre shortening. To avoid severe shortening of long softwood fibres and to retain the energy efficiency of refining, the bar leading edge profile should have radius of curvature fitted to the bar edge larger than about 80 micrometers, but not much more because that may reduce energy efficiency. Small size flaws in bar edges, such as scratches after machining should be removed by a careful finishing of fillings. Both the sharp bar edge and scratches are assumed to hold fibres, causing a tensile-type fibre failure mechanism to occur more easily. The wear and rounding of bar edges depends on the material composition of the fillings. For this reason, care should be taken in selecting a suitable filling material for refining long-fibre softwood pulps.
Kemiallisen massan jauhatus on eräs laajimmin ja ajallisesti pitkään tutkittu paperinvalmistuksen osa-alue, jonka mekanismit ovat osittain heikosti tunnettuja. Vaillinnainen ymmärrys yhdessä vaikeasti mitattavien kuitutason jauhatusvaikutusten kanssa on johtanut jauhatuskäytäntöjen ajoittain liian pitkälle vietyyn yksinkertaistukseen ja yleistykseen. Näistä lähtökohdista muodostui työn tausta-ajatus ja yleistavoite; jauhatusta ei pidä yleistää liikaa, vaan kemiallisen massan kuituflokkien käyttäytyminen jauhinterävälissä on yksilöllistä, johon käytetty kuitutyyppi ja sen dimensiot; esim. kuitupituus vaikuttaa. Tämä edellyttääkin tietyn kuitutyypin jauhatuksen huolellista optimointia. Havupuusellun fraktiointi nähtiin mahdollisuudeksi jakaa alkuperäinen sulppu kuitudimensioiltaan ja flokkaantumiseltaan erilaisiin jakeisiin. Näiden jauhatuskäyttäytyminen on aiemmin kartoitettu epätäydellisesti. Vastaavasti jauhiteräparametereista terän johtavan teräsärmän pyöreyden vaikutus kuitujen lyhentymisessä, sen numeerinen arvo ja mittaaminen havaittiin puutteellisesti tunnetuksi ja nykyjauhatuksessa osittain unohdetuksi parametriksi ja siten tutkimisen arvoiseksi. Työn yleistavoitteena olikin parantaa matalasakeusjauhatuksen suorituskykyä selvittämällä yllämainitun aihepiirin tekijöiden vaikutusta jauhatuskäyttäytymiseen-jauhinteräväliin ja kuituominaisuuksien kehittymiseen jauhatuksessa.
Väitöskirjan yhteenveto-osa kokoaa kokeellisen työn tärkeimmät tulokset ja johtopäätökset. Kokeellinen työ koostui kolmesta eri osa-alueesta; uuden matalasakeus-laboratoriojauhimen toistettavuuden arvioinnista ja tyhjäkäyntitehon mittauksen määrittelystä, havupuusellufraktioiden jauhatuskäyttäytymisen kartoittamisesta ja jauhatusparametrien optimoinnista ja jauhinteräkonfiguraation ja jauhinterän johtavan teräsärmän pyöreyden mittauksesta ja sen merkityksen arvioinnista pitkäkuituisen havupuusellun jauhatuksessa.
Jauhatuksen toistettavuuden kannalta riittävä esikäyttöaika havaittiin merkittäväksi parametriksi. Ennen tyhjäkäyntitehon rekisteröintiä jauhimen tulee lämmetä ja lähestyä tasapainotilaa, jotta riiittävän tarkka tyhjäkäyntitehoestimaatti saavutetaan. Jauhettaessa alhaisella 0.3 J/m intensiteetillä jo 12 % poikkeama rekisteröidyssä tyhjäkäyntitehossa aiheutti merkittävää vaihtelua kuitu- ja paperiominaisuuksissa. Laboratorio-olosuhteissa tyhjäkäyntitehonmääritys tulee olla päivittäinen toimenpide.
Pitkäkuituisen havupuusellun fraktioista painesihtilajittelun aksepti eli lyhytkuitufraktio osoitti poikkeavaa jauhatuskäyttäytymistä. Lyhytkuitufraktion maksimi jauhatusintensiteetti oli selvästi alhaisempi kuin alkuperäisen massan tai pitkäkuitufraktion. Vastaavasti lyhytkuitufraktion kuitujen katkeilu voimistui skandinaaviselle havupuumassalle alhaisessa jauhatusintensiteetissä. Kuitujen katkeilu voimistui 2.4 J/m intensiteetissä, kun muilla fraktioilla lyhentyminen vastaavassa jauhatusintensiteetissä oli maltillista. Myös jauhinteräpintojen välinen teräväli oli pienempi tietyssä jauhatusintensiteetissä, kun lyhytkuitufraktiota jauhettiin. Tämän fraktio-ominaisen jauhatuskäyttäytymisen uskotaan johtuvan flokkirakenteesta ja flokin ja sen kuitujen kokoonpuristumisesta teräsärmien ja pintojen aikaansaamassa kuormituksessa. Tulokset kannustavat jauhatusintensiteetin huolelliseen optimointiin, etenkin jos massan kuitupituutta muutetaan tai suunnitellaan fraktioidun massan jauhatusta.
Kartio- ja levyterävertailussa kartioteräjauhatuksen terärako vaikutti suuremmalta. Kyseistä ilmiötä ei tuloksista pystytty selittämään. Uutta numeerista informaatiota saatiin tutkittaessa teräsärmän profiilin roolia havupuukuitujen lyhentymisessä. Kun johtavan teräsärmän profiiliin sovitetun ympyrän halkaisija on pieni tai jos profiili sisältää kulmikkaita pienen mittakaavan muutoksia niin riski voimakkaalle kuitujen lyhentymiselle lisääntyy. Kulmikkaat mittausprofiilin muutokset voivat olla esimerkiksi naarmuja tai rosoja, jotka ovat peräisin jauhinterien valun ja viimeistelyn jäljiltä. Tulosten perusteella skandinaavisen pitkäkuituisen havupuusellun kuitupituuden säilyttämiseksi ja jauhatuksen energiatehokkuuden varmistamiseksi, pitäisi teräsärmään sovitetun ympyrän halkaisija olla suurempi kuin 80 mikrometriä, mutta ei paljon tätä suurempi, koska liiallisen pyöristymisen myötä voi jauhatuksen energiatehokkuus heiketä. Jauhinterien materiaalivalintoihin ja niiden kulumiskäyttäytymiseen tulisikin kiinnittää nykyistä enemmän huomiota.