Controlling polymer capture and translocation by electrostatic polymer-pore interactions

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Buyukdagli, Sahin
dc.contributor.author Ala-Nissila, T.
dc.date.accessioned 2017-10-13T10:24:49Z
dc.date.available 2017-10-13T10:24:49Z
dc.date.issued 2017-09-21
dc.identifier.citation Buyukdagli , S & Ala-Nissila , T 2017 , ' Controlling polymer capture and translocation by electrostatic polymer-pore interactions ' Journal of Chemical Physics , vol 147 , no. 11 , 114904 , pp. 1-14 . DOI: 10.1063/1.5004182 en
dc.identifier.issn 0021-9606
dc.identifier.issn 1089-7690
dc.identifier.other PURE UUID: 0e613429-7f51-46a2-83ee-49bea9de9205
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/controlling-polymer-capture-and-translocation-by-electrostatic-polymerpore-interactions(0e613429-7f51-46a2-83ee-49bea9de9205).html
dc.identifier.other PURE LINK: http://www.scopus.com/inward/record.url?scp=85029871762&partnerID=8YFLogxK
dc.identifier.other PURE LINK: http://aip.scitation.org/doi/full/10.1063/1.5004182
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/15720392/1.5004182.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/28119
dc.description.abstract Polymer translocation experiments typically involve anionic polyelectrolytes such as DNA molecules driven through negatively charged nanopores. Quantitative modeling of polymer capture to the nanopore followed by translocation therefore necessitates the consideration of the electrostatic barrier resulting from like-charge polymer-pore interactions. To this end, in this work we couple mean-field level electrohydrodynamic equations with the Smoluchowski formalism to characterize the interplay between the electrostatic barrier, the electrophoretic drift, and the electro-osmotic liquid flow. In particular, we find that due to distinct ion density regimes where the salt screening of the drift and barrier effects occurs, there exists a characteristic salt concentration maximizing the probability of barrier-limited polymer capture into the pore. We also show that in the barrier-dominated regime, the polymer translocation time τ increases exponentially with the membrane charge and decays exponentially fast with the pore radius and the salt concentration. These results suggest that the alteration of these parameters in the barrier-driven regime can be an efficient way to control the duration of the translocation process and facilitate more accurate measurements of the ionic current signal in the pore. en
dc.format.extent 1-14
dc.format.mimetype application/pdf
dc.language.iso en en
dc.relation.ispartofseries Journal of Chemical Physics en
dc.relation.ispartofseries Volume 147, issue 11 en
dc.rights openAccess en
dc.subject.other Physics and Astronomy(all) en
dc.subject.other Physical and Theoretical Chemistry en
dc.subject.other 114 Physical sciences en
dc.title Controlling polymer capture and translocation by electrostatic polymer-pore interactions en
dc.type A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.description.version Peer reviewed en
dc.contributor.department Bilkent University
dc.contributor.department Department of Applied Physics
dc.subject.keyword Physics and Astronomy(all)
dc.subject.keyword Physical and Theoretical Chemistry
dc.subject.keyword 114 Physical sciences
dc.identifier.urn URN:NBN:fi:aalto-201710136980
dc.identifier.doi 10.1063/1.5004182
dc.date.embargo info:eu-repo/date/embargoEnd/2018-09-21


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

My Account