Learning Centre

Novel data fusion method and exploration of multiple information sources for transcription factor target gene prediction

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Dai, Xiaofeng
dc.contributor.author Lähdesmäki, Harri
dc.date.accessioned 2017-05-30T12:19:02Z
dc.date.available 2017-05-30T12:19:02Z
dc.date.issued 2010
dc.identifier.citation Dai , X & Lähdesmäki , H 2010 , ' Novel data fusion method and exploration of multiple information sources for transcription factor target gene prediction ' , Eurasip Journal on Advances in Signal Processing , vol. 2010 , 235795 , pp. 1-15 . https://doi.org/10.1155/2010/235795 en
dc.identifier.issn 1687-6172
dc.identifier.issn 1687-6180
dc.identifier.other PURE UUID: 63fcc229-57fd-4d97-9994-7b85fafe0b2c
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/63fcc229-57fd-4d97-9994-7b85fafe0b2c
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/13004431/art_10.1155_2010_235795.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/26466
dc.description.abstract Background: Revealing protein-DNA interactions is a key problem in understanding transcriptional regulation at mechanistic level. Computational methods have an important role in predicting transcription factor target gene genomewide. Multiple data fusion provides a natural way to improve transcription factor target gene predictions because sequence specificities alone are not sufficient to accurately predict transcription factor binding sites. Methods: Here we develop a new data fusion method to combine multiple genome-level data sources and study the extent to which DNA duplex stability and nucleosome positioning information, either alone or in combination with other data sources, can improve the prediction of transcription factor target gene. Results. Results on a carefully constructed test set of verified binding sites in mouse genome demonstrate that our new multiple data fusion method can reduce false positive rates, and that DNA duplex stability and nucleosome occupation data can improve the accuracy oftranscription factor target gene predictions, especially when combined with other genome-level data sources. Cross-validation and other randomization tests confirm the predictive performance of our method. Our results also show that nonredundant data sources provide the most efficient data fusion. en
dc.format.extent 1-15
dc.format.mimetype application/pdf
dc.language.iso en en
dc.relation.ispartofseries EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING en
dc.relation.ispartofseries Volume 2010 en
dc.rights openAccess en
dc.title Novel data fusion method and exploration of multiple information sources for transcription factor target gene prediction en
dc.type A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.description.version Peer reviewed en
dc.identifier.urn URN:NBN:fi:aalto-201705305081
dc.identifier.doi 10.1155/2010/235795
dc.type.version publishedVersion


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

Statistics