Planck 2015 results

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Battaner, E. Benabed, K. Benoît, A. Benoit-Lévy, A. Bernard, J. P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. F. Catalano, A. Challinor, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombo, L. P L Combet, C. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. De Bernardis, P. De Rosa, A. De Zotti, G. Delabrouille, J. Désert, F. X. Di Valentino, E. Lähteenmäki, A. Savelainen, M. 2017-05-11T07:29:56Z 2017-05-11T07:29:56Z 2016-10-01
dc.identifier.citation Planck Collaboration 2016 , ' Planck 2015 results : XI. CMB power spectra, likelihoods, and robustness of parameters ' Astronomy and Astrophysics , vol 594 , A11 . DOI: 10.1051/0004-6361/201526926 en
dc.identifier.issn 0004-6361
dc.identifier.issn 1432-0746
dc.identifier.other PURE UUID: 5d66db46-937d-4e95-8ed0-735c43dfdc7a
dc.identifier.other PURE ITEMURL:
dc.identifier.other PURE LINK:
dc.identifier.other PURE FILEURL:
dc.description.abstract This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (ℓ < 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the ΛCDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, ns, is confirmed smaller than unity at more than 5σ from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck's wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline ΛCDM cosmology this requires τ = 0.078 ± 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the μK2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the ΛCDM model, showing consistency with those established independently from temperature information alone. en
dc.format.extent 99
dc.format.mimetype application/pdf
dc.language.iso en en
dc.relation.ispartofseries Astronomy and Astrophysics en
dc.relation.ispartofseries Volume 594 en
dc.rights openAccess en
dc.subject.other Astronomy and Astrophysics en
dc.subject.other Space and Planetary Science en
dc.subject.other 115 Astronomy and space science en
dc.title Planck 2015 results en
dc.type A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.description.version Peer reviewed en
dc.contributor.department Inria Université Paris-Saclay
dc.contributor.department Service d'Astrophysique CEA
dc.contributor.department Kavli Institute for Cosmology Cambridge
dc.contributor.department International School for Advanced Studies
dc.contributor.department IRAP
dc.contributor.department Universidad de Cantabria
dc.contributor.department AstroParticule et Cosmologie
dc.contributor.department Universit'a di Rome Sapienza
dc.contributor.department University of Granada
dc.contributor.department UMR7095
dc.contributor.department CNRS/IN2P3
dc.contributor.department INAF/IASF Milano
dc.contributor.department Jet Propulsion Laboratory, California Institute of Technology
dc.contributor.department University of Manchester
dc.contributor.department University of Oviedo
dc.contributor.department University of Toronto
dc.contributor.department University of California at Berkeley
dc.contributor.department Universite Paris Sorbonne - Paris IV
dc.contributor.department Université Sorbonne Paris Cité
dc.contributor.department INAF/IASF Bologna
dc.contributor.department University of Oxford
dc.contributor.department Télécom ParisTech
dc.contributor.department Princeton University
dc.contributor.department Niels Bohr Institute
dc.contributor.department Imperial College London
dc.contributor.department LERMA - Laboratoire d'Etudes du Rayonnement et de la Matiere en Astrophysique et Atmospheres
dc.contributor.department INAF Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna
dc.contributor.department Università La Sapienza
dc.contributor.department Department of Radio Science and Engineering
dc.contributor.department Department of Applied Physics
dc.subject.keyword Cosmic background radiation
dc.subject.keyword Cosmological parameters
dc.subject.keyword Cosmology: observations
dc.subject.keyword Methods: data analysis
dc.subject.keyword Methods: statistical
dc.subject.keyword Astronomy and Astrophysics
dc.subject.keyword Space and Planetary Science
dc.subject.keyword 115 Astronomy and space science
dc.identifier.urn URN:NBN:fi:aalto-201705113923
dc.identifier.doi 10.1051/0004-6361/201526926
dc.type.version publishedVersion

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive

Advanced Search

article-iconSubmit a publication


My Account