Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Giri, Ashutosh
dc.contributor.author Niemelä, Janne Petteri
dc.contributor.author Tynell, Tommi
dc.contributor.author Gaskins, John T.
dc.contributor.author Donovan, Brian F.
dc.contributor.author Karppinen, Maarit
dc.contributor.author Hopkins, Patrick E.
dc.date.accessioned 2016-11-08T12:15:32Z
dc.date.issued 2016-03-16
dc.identifier.citation Giri , A , Niemelä , J P , Tynell , T , Gaskins , J T , Donovan , B F , Karppinen , M & Hopkins , P E 2016 , ' Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices ' PHYSICAL REVIEW B , vol 93 , no. 11 , 115310 . DOI: 10.1103/PhysRevB.93.115310 en
dc.identifier.issn 1098-0121
dc.identifier.issn 1550-235X
dc.identifier.other PURE UUID: c3a7f2e8-6963-48d6-a1b7-a29fe7112e7f
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/heattransport-mechanisms-in-molecular-building-blocks-of-inorganicorganic-hybrid-superlattices(c3a7f2e8-6963-48d6-a1b7-a29fe7112e7f).html
dc.identifier.other PURE LINK: http://www.scopus.com/inward/record.url?scp=84961960835&partnerID=8YFLogxK
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/9124960/ERC_17.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/23460
dc.description.abstract Nanomaterial interfaces and concomitant thermal resistances are generally considered as atomic-scale planes that scatter the fundamental energy carriers. Given that the nanoscale structural and chemical properties of solid interfaces can strongly influence this thermal boundary conductance, the ballistic and diffusive nature of phonon transport along with the corresponding phonon wavelengths can affect how energy is scattered and transmitted across an interfacial region between two materials. In hybrid composites composed of atomic layer building blocks of inorganic and organic constituents, the varying interaction between the phononic spectrum in the inorganic crystals and vibronic modes in the molecular films can provide a new avenue to manipulate the energy exchange between the fundamental vibrational energy carriers across interfaces. Here, we systematically study the heat transfer mechanisms in hybrid superlattices of atomic- and molecular-layer-grown zinc oxide and hydroquinone with varying thicknesses of the inorganic and organic layers in the superlattices. We demonstrate ballistic energy transfer of phonons in the zinc oxide that is limited by scattering at the zinc oxide/hydroquinone interface for superlattices with a single monolayer of hydroquinone separating the thicker inorganic layers. The concomitant thermal boundary conductance across the zinc oxide interfacial region approaches the maximal thermal boundary conductance of a zinc oxide phonon flux, indicative of the contribution of long wavelength vibrations across the aromatic molecular monolayers in transmitting energy across the interface. This transmission of energy across the molecular interface decreases considerably as the thickness of the organic layers are increased. en
dc.format.mimetype application/pdf
dc.language.iso en en
dc.relation info:eu-repo/grantAgreement/EC/FP7/339478/EU//LAYERENG-HYBMAT
dc.relation.ispartofseries PHYSICAL REVIEW B en
dc.relation.ispartofseries Volume 93, issue 11 en
dc.rights openAccess en
dc.subject.other Condensed Matter Physics en
dc.subject.other Electronic, Optical and Magnetic Materials en
dc.subject.other 216 Materials engineering en
dc.title Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices en
dc.type A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.description.version Peer reviewed en
dc.contributor.department University of Virginia
dc.contributor.department Department of Chemistry
dc.subject.keyword Condensed Matter Physics
dc.subject.keyword Electronic, Optical and Magnetic Materials
dc.subject.keyword 216 Materials engineering
dc.identifier.urn URN:NBN:fi:aalto-201611085548
dc.identifier.doi 10.1103/PhysRevB.93.115310
dc.type.version publishedVersion


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

My Account