Development of wideband radio channel measurement and modeling techniques for future radio systems

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Kivinen, Jarmo
dc.date.accessioned 2012-02-13T12:19:05Z
dc.date.available 2012-02-13T12:19:05Z
dc.date.issued 2001-03-02
dc.identifier.isbn 951-22-5372-0
dc.identifier.issn 1456-3835
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/2326
dc.description.abstract This thesis discusses the development of micro- and millimeterwave wideband radio channel measurement and modeling techniques for future radio networks. Characterization of the radio channel is needed for radio system, wireless network, and antenna design. A radio channel measurement system was designed for 2.154, 5.3 GHz and 60 GHz center frequencies, and completed at the two lower frequencies. The sounder uses a pseudonoise code in the transmitter. In the receiver, first a sliding correlator, and later direct digital sampling, where the impulse response is detected by digital post processing, were realized. Certain implementation questions, like link budget, effects of phase noise on impulse response and direction of arrival estimation, and achievable performance using the designed concept, are discussed. Measurement campaigns included in this thesis were realized at 5.3 GHz frequency in micro- and picocells. A comprehensive measurement campaign performed inside different buildings was thoroughly analyzed. Propagation mechanisms were studied and empirical models for both large scale fading and multipath propagation were developed. Propagation through walls, diffraction through doorways, and propagation paths outside the building were observed. Pathloss in LOS was lower than the free space pathloss, due to wave guiding effects. In NLOS situation difference in the pathloss models in different buildings was significant. Behavior of the spatial diversity was estimated on the basis of spatial correlation functions extracted from the measurement data; an antenna separation of a fraction of a wavelength gives sufficient de-correlation for significant diversity gain in indoor environments at 5.3 GHz in NLOS. en
dc.format.extent 41, [68]
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher Helsinki University of Technology en
dc.publisher Teknillinen korkeakoulu fi
dc.relation.ispartofseries Helsinki University of Technology Radio Laboratory publications. Report S en
dc.relation.ispartofseries 244 en
dc.relation.haspart J. Kivinen, T. Korhonen, P. Aikio, R. Gruber, P. Vainikainen, and S.-G. Häggman, Wideband radio channel measurement system at 2 GHz, IEEE Transactions on Instrumentation and Measurement, vol. 48, No. 1, 1999, pp. 39-44.
dc.relation.haspart J. Kivinen and P. Vainikainen, Phase noise in a direct sequence based channel sounder, International Symposium on Personal, Indoor and Mobile Radio Communications Proceedings, Helsinki, Sept. 1-4, 1997, pp. 1115-1119.
dc.relation.haspart J. Kivinen and P. Vainikainen, Calibration scheme for synthesizer phase fluctuations in virtual antenna array measurements, Microwave and Optical Technology Letters, vol. 26, No. 3, 2000, pp. 183-187.
dc.relation.haspart J. Kivinen and P. Vainikainen, Wideband indoor radio channel measurements at 5.3 GHz, 27th European Microwave Conference Proceedings, Jerusalem, Israel, Sept. 8-12, 1997, pp. 464-469.
dc.relation.haspart J. Kivinen, X. Zhao, and P. Vainikainen, Wideband indoor radio channel measurements with direction of arrival estimations in the 5 GHz band, IEEE VTS 50th Vehicular Technology Conference Proceedings, Amsterdam, Netherlands, Sept. 19-22, 1999, pp. 2308-2312.
dc.relation.haspart J. Kivinen, X. Zhao, and P. Vainikainen, Empirical characterization of wideband indoor radio channel at 5.3 GHz, to be published in IEEE Transactions on Antennas and Propagation, May 2001, vol. 49, 10 p.
dc.relation.haspart K. Skog, A. Brehonnet, H. Kauppinen, and J. Kivinen, Wideband radio channel outdoor measurements at 5.3 GHz, AP 2000 Millennium Conference on Antennas and Propagation Proceedings, CD-ROM SP-444 (ISBN 92-9092-776-3), Davos, Switzerland, April 9-14, 2000, session 2p7, paper No. 1437.
dc.subject.other Electrical engineering en
dc.title Development of wideband radio channel measurement and modeling techniques for future radio systems en
dc.type G5 Artikkeliväitöskirja fi
dc.description.version reviewed en
dc.contributor.department Department of Electrical and Communications Engineering en
dc.contributor.department Sähkö- ja tietoliikennetekniikan osasto fi
dc.subject.keyword radio channel sounder en
dc.subject.keyword indoor radio channel en
dc.subject.keyword wideband correlator en
dc.subject.keyword radio channel modeling en
dc.identifier.urn urn:nbn:fi:tkk-002711
dc.type.dcmitype text en
dc.type.ontasot Väitöskirja (artikkeli) fi
dc.type.ontasot Doctoral dissertation (article-based) en
dc.contributor.lab Radio Laboratory en
dc.contributor.lab Radiolaboratorio fi


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

My Account