Learning Centre

Ultra-thin insulating layers of hexagonal boron nitride for high-resolution scanning tunneling spectroscopy

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Schulz, Fabian
dc.date.accessioned 2016-08-26T09:01:25Z
dc.date.available 2016-08-26T09:01:25Z
dc.date.issued 2016
dc.identifier.isbn 978-952-60-6966-1 (electronic)
dc.identifier.isbn 978-952-60-6967-8 (printed)
dc.identifier.issn 1799-4942 (electronic)
dc.identifier.issn 1799-4934 (printed)
dc.identifier.issn 1799-4934 (ISSN-L)
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/21572
dc.description.abstract Scanning tunneling spectroscopy (STS) allows for probing the local density of states of surfaces and adsorbates with atomic spatial resolution. When molecules or other nanostructures are electronically decoupled from the surface, STS can be interpreted in terms of the electronic structure of the isolated adsorbate. Ultra-thin insulating layers of metal oxides or alkali halides are commonly used to decouple single molecules and atoms. This thesis explores the possibilities of an alternative decoupling material: hexagonal boron nitride (h-BN).  We start by investigating the atomic-scale structure and electronic properties of an h-BN monolayer on Ir(111) and find that it is characterized by a moiré superstructure with a work function modulation of approx. 0.5 eV. Subsequent STS experiments on molecules deposited onto the h-BN/Ir(111) system indicate their efficient decoupling from the metallic substrate and local charging through the h-BN work function modulation. Comparing molecules in different charge states, we go beyond the prevalent single-particle picture when interpreting STS on molecules and explain the observed resonances as a series of many-body excited states. Finally, we utilize h-BN covalently attached to graphene (G) islands to decouple the G edges from the metallic substrate. This gives rise to an electronic state at the h-BN/G interface, which closely resembles the edge state theoretically predicted for pristine graphene edges.  The work presented in this thesis opens new avenues for high-resolution STS on molecular systems using h-BN as an ultra-thin insulating layer. en
dc.format.extent 56 + app. 38
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Aalto University en
dc.publisher Aalto-yliopisto fi
dc.relation.ispartofseries Aalto University publication series DOCTORAL DISSERTATIONS en
dc.relation.ispartofseries 163/2016
dc.relation.haspart [Publication 1]: Fabian Schulz, Robert Drost, Sampsa K. Hämäläinen, Thomas Demonchaux, Ari P. Seitsonen and Peter Liljeroth. Epitaxial hexagonal boron nitride on Ir(111): A work function template. Physical Review B 78, 235429, 2014. DOI: 10.1103/PhysRevB.89.235429
dc.relation.haspart [Publication 2]: Fabian Schulz, Robert Drost, Sampsa K. Hämäläinen and Peter Liljeroth. Templated self-assembly and local doping of molecules on epitaxial hexagonal boron nitride. ACS Nano 7, 11121-11128, 2013. DOI: 10.1021/nn404840h
dc.relation.haspart [Publication 3]: Fabian Schulz, Mari Ijäs, Robert Drost, Sampsa K. Hämäläinen, Ari Harju, Ari P. Seitsonen and Peter Liljeroth. Many-body transitions in a single molecule visualized by scanning tunnelling microscopy. Nature Physics 11, 229-234, 2015. DOI: 10.1038/nphys3212
dc.relation.haspart [Publication 4]: Robert Drost, Andreas Uppstu, Fabian Schulz, Sampsa K. Hämäläinen, Mikko Ervasti, Ari Harju and Peter Liljeroth. Electronic States at the graphene-hexagonal boron nitride zigzag interface. Nano Letters 14, 5128-5132, 2014. DOI: 10.1021/nl501895h
dc.subject.other Physics en
dc.title Ultra-thin insulating layers of hexagonal boron nitride for high-resolution scanning tunneling spectroscopy en
dc.type G5 Artikkeliväitöskirja fi
dc.contributor.school Perustieteiden korkeakoulu fi
dc.contributor.school School of Science en
dc.contributor.department Teknillisen fysiikan laitos fi
dc.contributor.department Department of Applied Physics en
dc.subject.keyword scanning tunneling microscopy en
dc.subject.keyword tunneling spectroscopy en
dc.subject.keyword self-assembly en
dc.subject.keyword single molecules en
dc.subject.keyword hexagonal boron nitride en
dc.subject.keyword graphene en
dc.identifier.urn URN:ISBN:978-952-60-6966-1
dc.type.dcmitype text en
dc.type.ontasot Doctoral dissertation (article-based) en
dc.type.ontasot Väitöskirja (artikkeli) fi
dc.contributor.supervisor Liljeroth, Peter, Prof., Aalto University, Department of Applied Physics, Finland
dc.opn Jelínek, Pavel, Dr., Institute of Physics of the Czech Academy of Science, Czech Republic
dc.contributor.lab Atomic Scale Physics en
dc.rev Temirov, Ruslan, Dr., Peter Grünberg Institut, Germany
dc.rev Brihuega, Ivan, Prof. Dr., Universidad Autónoma de Madrid, Spain
dc.date.defence 2016-09-16
local.aalto.formfolder 2016_08_26_klo_10_15
local.aalto.archive yes

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search archive

Advanced Search

article-iconSubmit a publication