The motion planning problem means the computation of a collision-free motion for a movable object among obstacles from the given initial placement to the given end placement. Efficient motion planning methods have many applications in many fields, such as robotics, computer aided design, and pharmacology. The problem is known to be PSPACE-hard. Because of the computational complexity, practical applications often use heuristic or incomplete algorithms. Probabilistic roadmap is a probabilistically complete motion planning method that has been an object of intensive study over the past years. The method is known to be susceptible to the problem of "narrow passages": Finding a motion that passes a narrow, winding tunnel can be very expensive.
This thesis presents a probabilistic roadmap method that addresses the narrow passage problem with a local planner based on heuristic search. The algorithm is suitable for planning motions for rigid bodies and articulated robots including multi-robot systems with many degrees-of-freedom. Variants of the algorithm are described for single query planning, single query planning on a distributed memory parallel computer, and a preprocessing type of learning algorithm for multiple query planning.
An empirical study of the effect of balance between local and global planning reveals that no universal optimal balance is likely to exist. Furthermore, it appears that many traditional simple local planners are too weak for efficient solving of problems with a narrow passage. The empirical results show that local planners based on backtracking search are more efficient than the more traditional local planners when a motion through a narrow passage is to be planned. The parallel variant has acceptable scalability on a parallel computer built from commodity components. It is also observed that run-time adjustment of the parameters of the search can reduce the variance of the run-cost. The run-cost variance is a known, but little studied deficiency of randomized motion planning methods. It is suggested that the future research in randomized motion planning algorithms should address run-cost variance as an important performance characteristic of the algorithm.
The results are obtained with empirical methods and established procedures from design and analysis of experiments. The algorithms are assessed with a number of test problems including known benchmark problems from the literature.