Optimised Strategies for Dynamic Asset Allocation

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.advisor Mikkonen, Jari
dc.contributor.author Tuovila, Henri
dc.date.accessioned 2016-06-17T12:23:04Z
dc.date.available 2016-06-17T12:23:04Z
dc.date.issued 2016-06-14
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/20833
dc.description.abstract Modern portfolio theory is a widely used framework in the financial industry. It has a solid theoretical background, and has been successfully employed by the practitioners for decades. Traditional models based on Harry Markowitz's portfolio theory, and its further improved versions, have one significant shortcoming: they are single-period models by definition, and are not able to accommodate multi-period considerations. In this thesis, instead of modern portfolio theory and mean-variance optimisation, we use stochastic programming. To employ stochastic programming as a technique to find the optimal allocations, we need to develop scenarios, or scenario trees that describe the stochastic variables and their distributions. To generate the scenarios, we employ a methodology called moment matching, where the relevant properties of stochastic variables in our generated scenarios are fitted to counterparts estimated by means of time series analysis and econometric modelling. These stochastic factors are also called market invariants in this context. Market invariants are then translated into asset returns, which make it possible to find optimal asset allocations in each stage of the scenario tree. An illustrative asset allocation example is presented in this thesis to demonstrate how the dynamic allocation strategy performs compared to a fixed allocation decision. The results are rather intuitive, and as expected, the dynamic allocation strategy outperforms the fixed strategy in the scenarios generated. A comparison to traditional mean-variance framework is conducted, and it is seen that the resulting allocations for both dynamic and fixed strategy are close to being mean-variance efficient. Further research topics include changing the scenario generation methodology, and more sophisticated modelling of interest bearing instruments. An interesting direction for further development would be constructing the entire term structure of a yield curve, which would allow flexible valuation of assets and liabilities based on their present values. en
dc.description.abstract Moderni portfolioteoria on rahoitusalalla yleisesti käytetty. Sillä on vahva teoreettinen pohja, ja sen sovelluksia on käytetty onnistuneesti vuosikymmenien ajan. Harry Markowitzin kehittämän portfolioteorian, ja siitä kehitettyjen parannettujen versioiden yksi ilmeinen heikkous on kuitenkin se, että ne ovat rakenteeltaan yksiperiodisia malleja. Ne eivät näin ollen sovellu moniperiodiseen tarkasteluun. Tässä diplomityössä portfolioteorian perinteisten mallien sijaan sovelletaan stokastista ohjelmointia optimaalisten omaisuuslajiallokaatioiden löytämiseen. Jotta stokastista ohjelmointia voisi hyödyntää, on ensin kehitettävä skenaariot, jotka kuvaavat satunnaismuuttujat ja niiden jakaumat, joiden perusteella optimointi voidaan tehdä. Skenaarioiden luomiseksi käytämme momenttien sovittamiseksi kutsuttua menetelmää, jossa ongelman kannalta relevantit satunnaismuuttujien ominaisuudet sovitetaan skenaarioissa aikasarja-analyysin ja muiden ekonometristen menetelmien avulla estimoituihin vastineisiin. Stokastisia muuttujia kutsutaan tässä yhteydessä markkinainvarianteiksi, ja ne voidaan muuntaa omaisuuslajien tuotoiksi, joiden perusteella voidaan laskea optimaalinen omaisuuslajiallokaatio skenaariopuun jokaisessa haarassa. Työssä esitellään havainnollistava esimerkki dynaamisen allokaatiostrategian ja kiinteän allokaatiostrategian vertailua varten. Tulokset ovat intuitiivisia ja kuten odotettua, dynaaminen strategia pärjää kiinteää paremmin. Tehty vertailu perinteiseen Markowitzin mallin mukaiseen optimointiin osoitti, että sekä dynaaminen että kiinteä stokastisen optimoinnin strategia ovat lähellä Markowitzin mallin mukaista tehokasta rintamaa. Jatkotutkimuskohteita ovat skenaarioiden generointiin käytetyt menetelmät ja korkoperustaisten sijoituslajien tarkempi mallintaminen. Kiinnostava tutkimussuunta olisi koko korkokäyrän mallintaminen, joka mahdollistaisi mielivaltaisten tase-erien markkina-arvostamisen nykyarvoonsa. fi
dc.format.extent 80+6
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.title Optimised Strategies for Dynamic Asset Allocation en
dc.title Optimoidut strategiat varojen dynaamiseen kohdentamiseen fi
dc.type G2 Pro gradu, diplomityö fi
dc.contributor.school Perustieteiden korkeakoulu fi
dc.subject.keyword stochastic programming en
dc.subject.keyword scenario tree en
dc.subject.keyword scenario generation en
dc.subject.keyword asset allocation en
dc.subject.keyword portfolio optimisation en
dc.subject.keyword short-rate model en
dc.identifier.urn URN:NBN:fi:aalto-201606172441
dc.programme.major Systeemi- ja operaatiotutkimus fi
dc.programme.mcode F3008 fi
dc.type.ontasot Master's thesis en
dc.type.ontasot Diplomityö fi
dc.contributor.supervisor Salo, Ahti
dc.programme Teknillisen fysiikan ja matematiikan koulutusohjelma fi


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

My Account