Machine vision system for a reverse vending machine

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.advisor Ritola, Tuomas
dc.contributor.advisor Hyyti, Heikki
dc.contributor.author Liukkonen, Jere
dc.date.accessioned 2015-12-16T07:36:33Z
dc.date.available 2015-12-16T07:36:33Z
dc.date.issued 2015-12-14
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/19067
dc.description.abstract In 2013, approximately 1.7 billion beverage containers were returned for recycling in Finland. Majority of the beverage containers were returned to grocery stores. To process the large volume of returned containers, the stores have automated the recycling by using reverse vending machines for automatically determining the refund for each container and sorting them based on their material. In this thesis, a machine vision system based on multiple cameras has been developed for a reverse vending machine prototype. The multi-camera system enables high return speed and simplifies the mechanical structure of the reverse vending machine. With the camera-based system, various visual features, such as deposit and security markings, can be extracted from the captured images for verification if required unlike with traditional laser-based barcode scanners. Furthermore, with no moving parts, the system is virtually maintenance free. The developed system identifies the returned beverage containers based on their barcode. The outer surface of a beverage container is imaged with six Raspberry Pi -based cameras simultaneously as it slides past the cameras and the barcode is extracted from the images. The properties of the container are obtained by fetching the barcode specific information from a local barcode database. The system is able to decode EAN–13, EAN–8, and UPC–A barcode standards at high speed and is tolerant to blurring and noise in the images. The software developed in this thesis has been designed to take into account and utilize the limitations imposed on the beverage containers and the barcodes and achieves excellent performance on a low-cost PC used for processing the camera feeds. The developed system achieves 95.2% recognition accuracy and a competitive return speed of 40.8 beverage containers a minute with off-the-shelf cameras and LED lights costing less than 1300€ in total. en
dc.description.abstract Vuonna 2013 Suomessa palautettiin kierrätykseen noin 1.7 miljardia juomapakkausta. Valtaosa palautuksista tehtiin ruokakaupoissa. Suurten palautusmäärien johdosta kaupat ovat automatisoineet palautusten käsittelyn pullonpalautusautomaateilla, jotka määrittävät ja palauttavat palautuspakkausten pantit ja lajittelevat ne materiaalin mukaan. Tässä työssä on kehitetty kameroihin perustuva konenäköjärjestelmä palautuspakkausten tunnistamiseen pullonpalautusautomaatissa. Monikamerajärjestelmä mahdollistaa korkean palautusnopeuden ja yksinkertaistaa pullonpalautusautomaatin mekaniikkaa. Kameroihin perustuvalla järjestelmälla voidaan tarvittaessa tarkistaa useita visuaalisia merkintöjä kuvista, kuten pantti- ja tunnistemerkintöjä toisin kuin perinteisillä laserviivakoodiskannereilla. Järjestelmässä ei lisäksi ole liikkuvia osia, joten se on lähes täysin huoltovapaa. Kehitetty järjestelmä tunnistaa palautetut juomapakkaukset niiden viivakoodin perusteella. Juomapakkauksen ulkopintaa kuvataan kuudella Raspberry Pi -pohjaisella kameralla yhtäaikaisesti sen liukuessa kameraroiden ohi ja viivakoodi luetaan kameroiden kuvista. Viivakoodin numerosarjan perusteella juomapakkauksen tiedot noudetaan paikallisesta viivakooditietokannasta. Järjestelmä kykenee dekoodaamaan EAN–13, EAN–8 ja UPC–A viivakoodistandardeja suurella nopeudella jopa sumeista ja kohinaisista kuvista. Laitetta varten tässä työssä kehitetty ohjelmisto on suunniteltu huomioimaan ja hyödyntämään juomapakkauksille ja viivakoodeille asettettuja rajoituksia. Sen suorituskyky on erinomainen tavallisella PC:llä, jolla kameroiden kuvavirta prosessoidaan. Kehitetyllä järjestelmällä saavutetaan 95.2% tunnistustarkkuus ja kilpailukykyinen 40.8 juomapakkauksen palautusnopeus minuutissa käyttäen yleisesti saatavilla olevia komponentteja, joiden kokonaiskustannus oli alle 1300€. fi
dc.format.extent 68+8
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.title Machine vision system for a reverse vending machine en
dc.title Konenäköjärjestelmä pullonpalautusautomaattiin fi
dc.type G2 Pro gradu, diplomityö en
dc.contributor.school Sähkötekniikan korkeakoulu fi
dc.subject.keyword machine vision en
dc.subject.keyword reverse vending machine en
dc.subject.keyword multi-camera system en
dc.subject.keyword Raspberry Pi en
dc.subject.keyword barcode scanning en
dc.subject.keyword EAN–13 en
dc.identifier.urn URN:NBN:fi:aalto-201512165585
dc.programme.major Älykkäät tuotteet fi
dc.programme.mcode ETA3006 fi
dc.type.ontasot Master's thesis en
dc.type.ontasot Diplomityö fi
dc.contributor.supervisor Visala, Arto
dc.programme AUT - Automaatio- ja systeemitekniikka (TS2005) fi
dc.location P1 fi


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse