Computational modeling and spectral analysis of nanoscale energy transfer

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.advisor Oksanen, Jani, Dr., Aalto University, Department of Neuroscience and Biomedical Engineering, Finland
dc.contributor.author Sääskilahti, Kimmo
dc.date.accessioned 2015-11-07T10:01:37Z
dc.date.available 2015-11-07T10:01:37Z
dc.date.issued 2015
dc.identifier.isbn 978-952-60-6522-9 (electronic)
dc.identifier.isbn 978-952-60-6521-2 (printed)
dc.identifier.issn 1799-4942 (electronic)
dc.identifier.issn 1799-4934 (printed)
dc.identifier.issn 1799-4934 (ISSN-L)
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/18496
dc.description.abstract Swift progress in the synthesis and processing of materials with nanoscale feature sizes has spawned new possibilities to control the flow of thermal energy. New materials and devices with engineered thermal properties are expected to enable, e.g., clean and more efficient production of energy from waste heat by thermoelectric converters, reducing the energy consumption of digital electronics, and generating novel technologies such as heat-assisted magnetic recording and phase-change memories. As the classical laws of energy transfer do not generally apply in nanoscale, practical realization of such applications calls for powerful computational methods delivering scientific understanding of nanoscale heat transfer. The goal of this thesis is to develop new computational models and methods for describing energy transfer in atomic-scale structures and to apply the methods to generate useful insight into various thermal phenomena. The work is founded on classical molecular dynamics simulations and quantum-mechanical Green's function approaches, both using the fluctuation-dissipation theorem to couple the studied systems to external heat baths. To enable detailed analysis of energy transfer mechanisms in thermal conduction, new methods to spectrally decompose the lattice heat current into frequency components are also developed. Spectral analysis is applied in the thesis to identify non-linear energy transfer mechanisms at material interfaces and to determine the mean free paths of heat carriers in carbon nanotubes. The results also suggest that the thermoelectric efficiency of silicon nanowires can be increased by a specific superlattice structure and that the electromagnetic energy transfer rate between dielectric nanoparticles can be tuned by a mirror cavity. In addition, the thesis initiates the development of a unified fluctuational model for describing energy transfer by lattice vibrations, electromagnetic fields, and electrons in a single mathematical framework that can generate extensive understanding of the energy conversion phenomena present in small structures. As a whole, the methods and results of the thesis provide new analytical and numerical tools for describing nanoscale energy transfer within a framework that may, with further development, become instrumental also in modeling energy conversion and transfer processes in multiscale systems involving heat, light and electricity. en
dc.description.abstract Nanoteknologian nopea kehitys on synnyttänyt uusia tapoja hallita lämpöenergiaa. Lämpöenergian tehokkaan hallinnan ja ohjauksen odotetaan mahdollistavan mm. puhtaan energiantuotannon termosähköisillä materiaaleilla, digitaalielektroniikan tehonkulutuksen pienentämisen sekä täysin uusien sovellusten kuten lämpöohjatun magneettisen tallentamisen kehittämisen. Lämpöenergiaa hyödyntävien sovellusten kehittäminen vaatii kuitenkin erinomaista ymmärrystä energiansiirtomekanismeista hyvin pienissä rakenteissa. Väitöskirjatyön tavoitteena on kehittää uusia laskennallisia malleja ja menetelmiä lämmönsiirron mallintamiseen nanomittakaavan rakenteissa sekä soveltaa menetelmiä uuden ymmärryksen synnyttämiseen. Työ perustuu klassiseen epätasapainotilan molekyylidynamiikkamenetelmään sekä kvanttimekaanisiin Greenin funktio -laskuihin, jotka molemmat hyödyntävät fluktuaatio-dissipaatioteoriaa tarkasteltavan systeemin ja ympäristön välisen kytkennän kuvaamiseen. Lämmönjohtumismekanismien analysoimiseksi kehitetään mm. menetelmä hilavärähtelyjen kuljettaman lämpövirran jakamiseksi taajuuskomponentteihin. Työn malleja ja spektraalista hajotelmaa sovelletaan epälineaaristen lämmönsiirtomekanismien tunnistamiseen materiaalirajapinnoilla sekä lämpöä kuljettavien hilavärähtelyjen vapaiden matkojen määrittämiseen hiilinanoputkissa. Työn tulokset osoittavat myös, että piinanolankojen termosähköisiä ominaisuuksia voidaan parantaa erityisellä superhilarakenteella ja että sähkömagneettisen lämmönsiirron voimakkuutta nanopartikkeleiden välillä voidaan muokata sijoittamalla partikkelit peilikaviteettiin. Työssä kehitetään lisäksi yhtenäinen matemaattinen malli hilavärähtelyjen, sähkömagneettisten kenttien ja elektronien lämmönkuljetuksen mallintamiseen. Kokonaisuudessaan väitöskirjatyö tarjoaa energiansiirron mallintamiseen työkaluja, jotka voivat tulevaisuudessa olla merkittävässä roolissa valon, sähkön ja lämmön vuorovaikutuksien kuvaamisessa eri mittakaavan rakenteissa. fi
dc.format.extent 94 + app. 81
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Aalto University en
dc.publisher Aalto-yliopisto fi
dc.relation.ispartofseries Aalto University publication series DOCTORAL DISSERTATIONS en
dc.relation.ispartofseries 189/2015
dc.relation.haspart [Publication 1]: K. Sääskilahti, J. Oksanen, J. Tulkki, and S. Volz. Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces. Phys. Rev. B, 90, 134312, October 2014. DOI: 10.1103/PhysRevB.90.134312
dc.relation.haspart [Publication 2]: K. Sääskilahti, J. Oksanen, S. Volz, and J. Tulkki. Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics. Phys. Rev. B, 91, 115426, March 2015. DOI: 10.1103/PhysRevB.91.115426
dc.relation.haspart [Publication 3]: Shiyun Xiong, Yuriy A. Kosevich, K. Sääskilahti, Yuxiang Ni, and Sebastian Volz. Tunable thermal conductivity in silicon twinning superlattice nanowires. Phys. Rev. B, 90, 195439, November 2014. DOI: 10.1103/PhysRevB.90.195439
dc.relation.haspart [Publication 4]: K Sääskilahti, J. Oksanen, R. P. Linna, and J. Tulkki. Thermal conduction and interface effects in nanoscale Fermi-Pasta-Ulam conductors. Phys. Rev. E, 86, 031107, September 2012. DOI: 10.1103/PhysRevE.86.031107
dc.relation.haspart [Publication 5]: K. Sääskilahti, J. Oksanen, R. P. Linna, and J. Tulkki. Phonon interference and anharmonicity effects in nanoconstrictions. AIP Conf. Proc., 1506, 15, December 2012. DOI: 10.1063/1.4772518
dc.relation.haspart [Publication 6]: K. Sääskilahti, J. Oksanen, and J. Tulkki. Thermal balance and quantum heat transport in nanostructures thermalized by local Langevin heat baths. Phys. Rev. E, 88, 012128, July 2013. DOI: 10.1103/PhysRevE.88.012128
dc.relation.haspart [Publication 7]: K. Sääskilahti, J. Oksanen, and J. Tulkki. Quantum Langevin equation approach to electromagnetic energy transfer between dielectric bodies in an inhomogeneous environment. Phys. Rev. B, 89, 134301, April 2014. DOI: 10.1103/PhysRevB.89.134301
dc.subject.other Energy en
dc.subject.other Physics en
dc.title Computational modeling and spectral analysis of nanoscale energy transfer en
dc.title Nanomittakaavan energiansiirron laskennallinen mallinnus ja taajuusanalyysi fi
dc.type G5 Artikkeliväitöskirja fi
dc.contributor.school Perustieteiden korkeakoulu fi
dc.contributor.school School of Science en
dc.contributor.department Neurotieteen ja lääketieteellisen tekniikan laitos fi
dc.contributor.department Department of Neuroscience and Biomedical Engineering en
dc.subject.keyword heat transfer en
dc.subject.keyword molecular dynamics en
dc.subject.keyword phonons en
dc.subject.keyword lämmönsiirto fi
dc.subject.keyword molekyylidynamiikka fi
dc.subject.keyword fononit fi
dc.identifier.urn URN:ISBN:978-952-60-6522-9
dc.type.dcmitype text en
dc.type.ontasot Doctoral dissertation (article-based) en
dc.type.ontasot Väitöskirja (artikkeli) fi
dc.contributor.supervisor Tulkki, Jukka, Prof., Aalto University, Department of Neuroscience and Biomedical Engineering, Finland
dc.opn Termentzidis, Konstantinos, Dr., Université de Lorraine, France
dc.contributor.lab Engineered Nanosystems group en
dc.rev Maasilta, Ilari, Prof., University of Jyväskylä, Finland
dc.rev Merabia, Samy, Dr., Université de Lyon, France
dc.date.defence 2015-12-03


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse