Title: | Bayesian Latent Gaussian Spatio-Temporal Models Bayesilaisia gaussisia piilomuuttujamalleja aika-paikka-aineistoille |
Author(s): | Luttinen, Jaakko |
Date: | 2015 |
Language: | en |
Pages: | 74 + app. 95 |
Department: | Tietojenkäsittelytieteen laitos Department of Information and Computer Science |
ISBN: | 978-952-60-6192-4 (electronic) 978-952-60-6191-7 (printed) |
Series: | Aalto University publication series DOCTORAL DISSERTATIONS, 62/2015 |
ISSN: | 1799-4942 (electronic) 1799-4934 (printed) 1799-4934 (ISSN-L) |
Supervising professor(s): | Karhunen, Juha, Prof., Aalto University, Department of Information and Computer Science, Finland |
Thesis advisor(s): | Ilin, Alexander, Dr., Aalto University, Department of Information and Computer Science, Finland |
Subject: | Computer science |
Keywords: | Bayesian modelling, variational methods, spatio-temporal, factor analysis, linear state-space model, Gaussian process, bayesilainen mallintaminen, variationaaliset menetelmät, aika-paikka-aineisto, faktorianalyysi, lineaarinen tila-avaruusmalli, gaussinen prosessi |
Archive | yes |
OEVS yes | |
|
|
Abstract:Tämän väitöskirjan tavoitteena oli kehittää tehokkaita bayesilaisia menetelmiä suurten aika-paikka-aineistojen mallintamiseen. Keskeisin haaste oli luoda menetelmistä sellaisia, että ne pystyvät sekä mallintamaan monimutkaisia rakenteita että skaalautumaan suuriin aineistoihin. Tutkimuksessa kehitetyt menetelmät ovatkin joustavia mutta mahdollistavat tehokkaat oppimisalgoritmit. |
|
Parts:[Publication 1]: Jaakko Luttinen, Alexander Ilin. Variational Gaussian-process factor analysis for modeling spatio-temporal data. In. Y. Bengio, D. Schuurmans, J.D. Lafferty, C.K.I. Williams and A. Culotta, editors, Advances in Neural Information Processing Systems 22 (NIPS 2009), Vancouver, Canada, Pages 1177-1185, Curran Associates, Inc., 2009.[Publication 2]: Jaakko Luttinen, Alexander Ilin. Transformations in variational Bayesian factor analysis to speed up learning. Neurocomputing, Volume 73, Issues 7-9, Pages 1093-1102, 2010. DOI: 10.1016/j.neucom.2009.11.018 View at Publisher [Publication 3]: Jaakko Luttinen, Alexander Ilin. Efficient Gaussian process inference for short-scale spatio-temporal modeling. In N. Lawrence and M. Girolami, editors, Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2012), La Palma, Canary Islands, Pages 741-750, 2012.[Publication 4]: Jaakko Luttinen, Alexander Ilin, Juha Karhunen. Bayesian robust PCA of incomplete data. Neural Processing Letters, Volume 36, Issue 2, Pages 189-202, 2012. DOI: 10.1007/s11063-012-9230-4 View at Publisher [Publication 5]: Jaakko Luttinen. Fast variational Bayesian linear state-space model. In H. Blockeel, K. Kersting, S. Nijssen and F. Železný, editors, Proceedings of the Sixth European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2013), Prague, Czech Republic, Pages 305-320, Springer Berlin Heidelberg, 2013.[Publication 6]: Jaakko Luttinen, Tapani Raiko, Alexander Ilin. Linear state-space model with time-varying dynamics. In T. Calders, F. Esposito, E. Hüllermeier and R. Meo, editors, Proceedings of the Seventh European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2014), Nancy, France, Pages 338-353, Springer Berlin Heidelberg, 2014.[Publication 7]: Jaakko Luttinen. BayesPy: Variational Bayesian inference in Python. Submitted to Journal of Machine Learning Research, 5 pages, 2015. |
|
|
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Page content by: Aalto University Learning Centre | Privacy policy of the service | About this site