Learning Centre

Using Monte Carlo simulation to support a retail real estate investment decision

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.advisor Vimpari, Jussi
dc.contributor.author Suhonen, Ville
dc.date.accessioned 2015-01-21T07:12:07Z
dc.date.available 2015-01-21T07:12:07Z
dc.date.issued 2014-12-15
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/14972
dc.description.abstract The academia and professional organizations in the field of real estate have raised discussion about adding probabilistic features into real estate valuations to take into account the uncertain characteristics of any valuation. Currently in the real estate sector the value of a property is usually calculated by an appraiser using a discounted cash flow model (DCF-model) to reach a single point valuation. The valuation of the appraiser is often falsely interpreted as an absolute truth, even though no cash flow model can be exactly certain unless the future can be correctly predicted. A more sophisticated application of the DCF analysis can be used to achieve a probability distribution of single point valuations. This application uses a tool that simulates the valuation process multiple times. It includes defining the input variables as ranges of possible values to be used in the valuation. This method is called Monte Carlo simulation. This master’s thesis looks to clarify how DCF is used when evaluating potential real estate investments, what are its main disadvantages, and can the decision process be enhanced using Monte Carlo simulation. These questions are answered by conducting a literature study where the frame of reference for the theoretical study is built and a case study where the acquisition of Shopping Centre Arabia is reviewed. In the revision process people involved in the acquisition process are interviewed and the material available for the initial real estate investment analysis is examined and developed to create a Monte Carlo simulation model. The results created by the model are compared with the results produced with a traditional DCF model during the acquisition process. The main disadvantage of using only DCF calculation to assess a real estate investment target is that DCF does not take into account the uncertainty that the input variables are subject to. In the empiric study it was recognized that a MCS model can support an initial analysis based on direct capitalization calculation or DCF calculation. MCS model provides numerical data about the uncertainty of the market value calculation results of a standard DCF calculation and therefore measures the level of comfort that the analyst has towards the DCF calculation. en
dc.description.abstract Akateemikkojen ja kiinteistöalan ammattilaisten keskuudessa on herännyt keskustelu todennäköisyysominaisuuksien lisäämisestä kiinteistöarvioihin, jotta arvioissa voitaisiin ottaa huomioon niihin liittyvä epävarmuus. Yleisesti kiinteistöalalla arviot toteutetaan diskontatun kassavirran laskentamallilla, joka yleensä tuottaa yhden pistemäisen arvion kiinteistön arvolle. Arviomiehen tuottamaa arvio tulkitaan yleisesti absoluuttisena totuutena, vaikka todellisuudessa mikään kassavirtamalli ei voi tuottaa täydellistä arviota, jos tulevaisuutta ei voida täydellisellä tarkkuudella ennustaa. Pidemmälle kehitetyllä versiolla tästä laskentatavasta voidaan muodostaa yksittäisten pistemäisten arvioiden sijasta arvion mahdollisten tulosten todennäköisyysjakauma. Tässä versiossa käytetään sovellusta, joka toistaa yksinkertaisen prosessin useita kertoja ja jossa mallin käyttämät muuttujat määritellään yksittäisten lukujen sijasta mahdollisina raja-arvoina. Tätä metodia kutsutaan Monte Carlo simulaatioksi. Tämä diplomityö pyrkii selvittämään miten diskontatun kassavirran mallia käytetään potentiaalisten sijoituskohteiden arvioinnissa, mitkä ovat sen heikkoudet, ja voiko sijoituspäätöstä tukea Monte Carlo simulaation avulla. Näihin kysymyksiin vastataan kirjallisuuskatsauksen avulla, jossa luodaan viitekehys empiiriselle tutkimukselle, sekä case-tutkimuksella, jonka yhteydessä käydään uudelleen läpi kauppakeskus Arabian hankintaprosessi. Case-tutkimuksessa haastatellaan kauppakeskus Arabian hankinnassa mukana olleita ihmisiä, sekä analysoidaan hankintaprosessissa käytössä ollut materiaali. Materiaalianalyysin pohjalta luodaan Monte Carlo simulaatio-malli, josta saatavia laskelmia verrataan tuloksiin, jotka tuotettiin traditionaalisella kassavirtamallilla Arabian hankinnan yhteydessä. Perinteisen kassavirtalaskelman heikkoutena voidaan pitää sitä, ettei se ota huomioon epävarmuutta, joka liittyy siinä käytettäviin lähtömuuttujiin. Empiirisessä tutkimuksessa havaittiin, että Monte Carlo simulaatio voi tukea perinteisen kassavirtalaskelman avulla saatavia tuloksia. Monte Carlo simulaatio tuottaa tietoa kassavirtalaskelman mahdollisien lopputulosten todennäköisyyksistä ja voi lisätä analyytikon luottamusta tuloksiin, joita saadaan perinteisen kassavirtalaskelman avulla. fi
dc.format.extent 54+8
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.title Using Monte Carlo simulation to support a retail real estate investment decision en
dc.title Monte Carlo -simulaation käyttö kauppakiinteistösijoituspäätöksen tukena fi
dc.type G2 Pro gradu, diplomityö en
dc.contributor.school Insinööritieteiden korkeakoulu fi
dc.subject.keyword Monte Carlo simulation en
dc.subject.keyword real estate investment en
dc.subject.keyword investment decision making en
dc.subject.keyword real estate valuation en
dc.subject.keyword probability distribution en
dc.subject.keyword real property en
dc.identifier.urn URN:NBN:fi:aalto-201501221162
dc.programme.major Real Estate Investment and Finance fi
dc.programme.mcode M3009 fi
dc.type.ontasot Master's thesis en
dc.type.ontasot Diplomityö fi
dc.contributor.supervisor Junnila, Seppo
dc.programme Kiinteistötalouden koulutusohjelma fi
local.aalto.openaccess yes
local.aalto.digifolder Aalto_07403
dc.rights.accesslevel openAccess
local.aalto.idinssi 50525
dc.type.publication masterThesis
dc.type.okm G2 Pro gradu, diplomityö


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse