Title: | Optical Properties of MoSe2 Monolayer Implanted with Ultra-Low-Energy Cr Ions |
Author(s): | Bui, Minh N. ; Rost, Stefan ; Auge, Manuel ; Zhou, Lanqing ; Friedrich, Christoph ; Blügel, Stefan ; Kretschmer, Silvan ; Krasheninnikov, Arkady V. ; Watanabe, Kenji ; Taniguchi, Takashi ; Hofsäss, Hans C. ; Grützmacher, Detlev ; Kardynał, Beata E. |
Date: | 2023-07-26 |
Language: | en |
Pages: | 11 35321-35331 |
Department: | Forschungszentrum Jülich RWTH Aachen University University of Göttingen Helmholtz-Zentrum Dresden-Rossendorf Department of Applied Physics National Institute for Materials Science Tsukuba Department of Applied Physics |
Series: | ACS Applied Materials and Interfaces, Volume 15, issue 29 |
ISSN: | 1944-8244 1944-8252 |
DOI-number: | 10.1021/acsami.3c05366 |
Keywords: | density functional theory, molecular dynamics, MoSe, photoluminescence, transition-metal dichalcogenide monolayer, ultra-low-energy ion implantation, van der Waals heterostructure |
|
|
This publication is imported from Aalto University Research information portal: https://research.aalto.fi
> View this publication in Research information portal > Other link related to publication (Research information portal) |
|
Bui , M N , Rost , S , Auge , M , Zhou , L , Friedrich , C , Blügel , S , Kretschmer , S , Krasheninnikov , A V , Watanabe , K , Taniguchi , T , Hofsäss , H C , Grützmacher , D & Kardynał , B E 2023 , ' Optical Properties of MoSe 2 Monolayer Implanted with Ultra-Low-Energy Cr Ions ' , ACS Applied Materials and Interfaces , vol. 15 , no. 29 , pp. 35321-35331 . https://doi.org/10.1021/acsami.3c05366 |
|
Abstract:This paper explores the optical properties of an exfoliated MoSe2 monolayer implanted with Cr+ ions, accelerated to 25 eV. Photoluminescence of the implanted MoSe2 reveals an emission line from Cr-related defects that is present only under weak electron doping. Unlike band-to-band transition, the Cr-introduced emission is characterized by nonzero activation energy, long lifetimes, and weak response to the magnetic field. To rationalize the experimental results and get insights into the atomic structure of the defects, we modeled the Cr-ion irradiation process using ab initio molecular dynamics simulations followed by the electronic structure calculations of the system with defects. The experimental and theoretical results suggest that the recombination of electrons on the acceptors, which could be introduced by the Cr implantation-induced defects, with the valence band holes is the most likely origin of the low-energy emission. Our results demonstrate the potential of low-energy ion implantation as a tool to tailor the properties of two-dimensional (2D) materials by doping.
|
|
|
|
Description:Funding Information: This project was supported by the “Integration of Molecular Components in Functional Macroscopic Systems” initiative of Volkswagen Foundation (grant numbers 93425, 93427, and 93428). The authors would like to thank the staff at the Helmholtz Nano Facility of Forschungszentrum Jülich for helping with substrate fabrication and Felix Junge (II. Institute of Physics, University of Göttingen, Göttingen, Germany) for organizing the RBS data, and the authors acknowledge the usage of VESTA software for producing the graphics and the computing time granted through JARA-HPC on the supercomputer JURECA at Forschungszentrum Jülich. A.V.K. acknowledges funding from the German Research Foundation (DFG), project KR 4866/8-1, and the collaborative research center “Chemistry of Synthetic 2D Materials” SFB-1415-417590517. Generous grants of computer time from the Technical University of Dresden computing cluster (TAURUS) and the High Performance Computing Center (HLRS) in Stuttgart, Germany, are gratefully appreciated. K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant numbers 19H05790 and 20H00354). Funding Information: Volkswagen Foundation: “Integration of Molecular Components in Functional Macroscopic Systems” initiative, grant numbers 93425, 93427, and 93428. German Research Foundation (DFG): project KR 4866/8-1, and the collaborative research center “Chemistry of Synthetic 2D Materials” SFB-1415-417590517. Japan Society for the Promotion of Science (JSPS): Grants-in-Aid for Scientific Research (KAKENHI), grant numbers 19H05790 and 20H00354. Publisher Copyright: © 2023 The Authors. Published by American Chemical Society.
|
|
|
Files | Size | Format | View |
---|---|---|---|
There are no open access files associated with this item. |
Page content by: Aalto University Learning Centre | Privacy policy of the service | About this site