Predictable Quantum Efficient Detector

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.advisor Manoocheri, Farshid, Dr., Aalto University, Aalto University, Department of Signal Processing and Acoustics, Finland Sildoja, Meelis-Mait 2013-12-02T10:00:36Z 2013-12-02T10:00:36Z 2013
dc.identifier.isbn 978-952-60-5463-6 (electronic)
dc.identifier.isbn 978-952-60-5462-9 (printed)
dc.identifier.issn 1799-4942 (electronic)
dc.identifier.issn 1799-4934 (printed)
dc.identifier.issn 1799-4934 (ISSN-L)
dc.description.abstract This thesis gives an overview of the Predictable Quantum Efficient Detector designed to measure optical radiation with theoretical relative uncertainty of 1 ppm (parts per million). The device is based on two custom made large area induced junction silicon photodiodes arranged in a wedged trap structure. High internal quantum efficiency (IQE) of the photodiodes is achieved by means of low doping concentration and usage of the reverse bias voltage. The IQE is predicted to be improved furthermore using low operating temperature close to 77 K. The losses due to reflected light are minimized by multiple reflections between the photodiodes. Low losses allow the PQED to work as an ideal quantum detector whose spectral responsivity is determined purely by the fundamental constants h, c, e and vacuum wavelength lambda. The remaining minor charge carrier losses are predictable using physical modelling whereas fractional reflectance losses can be measured. These properties classify the PQED as an absolute detector which does not require calibration against any other radiometric primary standard. The prototype PQED was compared against present primary standard - the cryogenic radiometer – at the wavelengths of 476 nm, 532 nm and 760 nm at room temperature and at liquid nitrogen temperature. Comparisons showed that the predicted external quantum deficiency of the PQED agreed with the measured external quantum deficiency within the expanded uncertainty of 60 ppm to 180 ppm determined by the cryogenic radiometer at both temperatures. These results indicate that the responsivity of the PQED is highly predictable and its uncertainty is comparable with the uncertainty of the conventional cryogenic radiometer. Such data provide evidence that the cryogenic radiometer operated close to 10 K temperatures may be replaced by a PQED operated even at room temperature. The advantage of the PQED is its simple operation which is comparable with any other silicon based photodetector whereas its optical radiation detection uncertainty is comparable with expensive and sophisticated cryogenic radiometer. en
dc.format.extent 115
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher Aalto University en
dc.publisher Aalto-yliopisto fi
dc.relation.ispartofseries Aalto University publication series DOCTORAL DISSERTATIONS en
dc.relation.ispartofseries 199/2013
dc.relation.haspart [Publication 1]: M. Sildoja, F. Manoocheri, and E. Ikonen, “Reducing photodiode reflectance by Brewster-angle operation,” Metrologia, 45, 11–15, 2008.
dc.relation.haspart [Publication 2]: M. Sildoja, F. Manoocheri, and E. Ikonen, “Reflectance calculations for a predictable quantum efficient detector,” Metrologia, 46, S151–S154, 2009.
dc.relation.haspart [Publication 3]: J. Gran, T. Kübarsepp, M. Sildoja, F. Manoocheri, E. Ikonen, and I. Müller, “Simulations of a predictable quantum efficient detector with PC1D,” Metrologia, 49, S130–S134, 2012.
dc.relation.haspart [Publication 4]: M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, and M. L. Rastello, “Predictable quantum efficient detector: I. Photodiodes and predicted responsivity,” Metrologia, 50, 385–394, 2013.
dc.relation.haspart [Publication 5]: I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, “Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia, 50, 395–401, 2013.
dc.relation.haspart [Publication 6]: M. Sildoja, T. Dönsberg, H. Mäntynen, M. Merimaa, F. Manoocheri, and E. Ikonen, “Use of the predictable quantum efficient detector with light sources of uncontrolled state of polarization,” Measurement Science and Technology, accepted.
dc.subject.other Electrical engineering en
dc.subject.other Physics
dc.title Predictable Quantum Efficient Detector en
dc.type G5 Artikkeliväitöskirja fi Sähkötekniikan korkeakoulu fi School of Electrical Engineering en
dc.contributor.department Signaalinkäsittelyn ja akustiikan laitos fi
dc.contributor.department Department of Signal Processing and Acoustics en
dc.subject.keyword photodetectors en
dc.subject.keyword silicon photodiodes en
dc.subject.keyword metrology en
dc.subject.keyword radiometry en
dc.subject.keyword optical power measurements en
dc.subject.keyword absolute standards en
dc.subject.keyword optical standards and testing en
dc.identifier.urn URN:ISBN:978-952-60-5463-6
dc.type.dcmitype text en
dc.type.ontasot Doctoral dissertation (article-based) en
dc.type.ontasot Väitöskirja (artikkeli) fi
dc.contributor.supervisor Ikonen, Erkki, Prof., Aalto University, Department of Signal Processing and Acoustics, Finland
dc.opn Dowell, Marla, Dr., National Institute of Standards and Technology, USA 2013-11-12
dc.contributor.lab Metrology Research Institute en
dc.rev Monakhov, Edouard, prof., University of Oslo, Norway
dc.rev Nield, Kathryn, dr., Measurement Standards Laboratory, New Zealand 2013-12-13

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search archive

Advanced Search

article-iconSubmit a publication