Learning Centre

Flow-Based Clustering and Spectral Clustering

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Sarcheshmehpour, Y.
dc.contributor.author Tian, Y.
dc.contributor.author Zhang, L.
dc.contributor.author Jung, A.
dc.contributor.editor Matthews, Michael B.
dc.date.accessioned 2022-06-08T06:11:00Z
dc.date.available 2022-06-08T06:11:00Z
dc.date.issued 2021
dc.identifier.citation Sarcheshmehpour , Y , Tian , Y , Zhang , L & Jung , A 2021 , Flow-Based Clustering and Spectral Clustering : A Comparison . in M B Matthews (ed.) , 55th Asilomar Conference on Signals, Systems and Computers, ACSSC 2021 . Conference Record - Asilomar Conference on Signals, Systems and Computers , vol. 2021-October , IEEE , pp. 1292-1296 , Asilomar Conference on Signals, Systems & Computers , Pacific Grove , California , United States , 31/10/2021 . https://doi.org/10.1109/IEEECONF53345.2021.9723162 en
dc.identifier.isbn 9781665458283
dc.identifier.issn 1058-6393
dc.identifier.other PURE UUID: 18e594d5-0494-43a6-b931-1b68ef801a85
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/18e594d5-0494-43a6-b931-1b68ef801a85
dc.identifier.other PURE LINK: http://www.scopus.com/inward/record.url?scp=85127057489&partnerID=8YFLogxK
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/83926660/SCI_SarcheshmehPour_etal_Flow_based_clustering_Asilomar_2021.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/114736
dc.description Publisher Copyright: © 2021 IEEE.
dc.description.abstract We propose and study a novel graph clustering method for data with an intrinsic network structure. Similar to spectral clustering, we exploit an intrinsic network structure of data to construct Euclidean feature vectors. These feature vectors can then be fed into basic clustering methods such as k-means or Gaussian mixture model (GMM) based soft clustering. What sets our approach apart from spectral clustering is that we do not use the eigenvectors of a graph Laplacian to construct the feature vectors. Instead, we use the solutions of total variation minimization problems to construct feature vectors that reflect connectivity between data points. Our motivation is that the solutions of total variation minimization are piece-wise constant around a given set of seed nodes. These seed nodes can be obtained from domain knowledge or by simple heuristics that are based on the network structure of data. Our results indicate that our clustering methods can cope with certain graph structures that are challenging for spectral clustering methods. en
dc.format.extent 5
dc.format.extent 1292-1296
dc.format.mimetype application/pdf
dc.language.iso en en
dc.relation.ispartof Asilomar Conference on Signals, Systems & Computers en
dc.relation.ispartofseries 55th Asilomar Conference on Signals, Systems and Computers, ACSSC 2021 en
dc.relation.ispartofseries Conference Record - Asilomar Conference on Signals, Systems and Computers en
dc.relation.ispartofseries Volume 2021-October en
dc.rights openAccess en
dc.title Flow-Based Clustering and Spectral Clustering en
dc.type A4 Artikkeli konferenssijulkaisussa fi
dc.description.version Peer reviewed en
dc.contributor.department Department of Computer Science
dc.contributor.department Computer Science Professors
dc.subject.keyword clustering
dc.subject.keyword community detection
dc.subject.keyword complex networks
dc.subject.keyword machine learning
dc.subject.keyword non-smooth optimization
dc.identifier.urn URN:NBN:fi:aalto-202206083579
dc.identifier.doi 10.1109/IEEECONF53345.2021.9723162
dc.type.version acceptedVersion


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

Statistics