dc.contributor |
Aalto-yliopisto |
fi |
dc.contributor |
Aalto University |
en |
dc.contributor.author |
Kazemi, Parham |
|
dc.contributor.author |
Ponnada, Tushara |
|
dc.contributor.author |
Al-Tous, Hanan |
|
dc.contributor.author |
Liang, Ying-Chang |
|
dc.contributor.author |
Tirkkonen, Olav |
|
dc.date.accessioned |
2021-09-02T08:47:36Z |
|
dc.date.available |
2021-09-02T08:47:36Z |
|
dc.date.issued |
2021-07-28 |
|
dc.identifier.citation |
Kazemi , P , Ponnada , T , Al-Tous , H , Liang , Y-C & Tirkkonen , O 2021 , Channel Charting Based Beam SNR Prediction . in 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit) . , 9482548 , European conference on networks and communications , IEEE , pp. 72-77 , European Conference on Networks and Communications , Porto , Portugal , 08/06/2021 . https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482548 |
en |
dc.identifier.isbn |
978-1-6654-1526-2 |
|
dc.identifier.issn |
2475-6490 |
|
dc.identifier.issn |
2575-4912 |
|
dc.identifier.other |
PURE UUID: e59ac2e4-a9b7-4b45-8f3b-1ea2b4cd8f6a |
|
dc.identifier.other |
PURE ITEMURL: https://research.aalto.fi/en/publications/e59ac2e4-a9b7-4b45-8f3b-1ea2b4cd8f6a |
|
dc.identifier.other |
PURE LINK: http://www.scopus.com/inward/record.url?scp=85112647684&partnerID=8YFLogxK |
|
dc.identifier.other |
PURE FILEURL: https://research.aalto.fi/files/64983956/ELEC_Kazemi_etal_Channel_Charting_Based_Beam_SNR_Prediction.pdf |
|
dc.identifier.uri |
https://aaltodoc.aalto.fi/handle/123456789/109623 |
|
dc.description |
| openaire: EC/H2020/813999/EU//WINDMILL |
|
dc.description.abstract |
We consider machine learning for intra cell beam handovers in mmWave 5GNR systems by leveraging Channel Charting (CC). We develop a base station centric approach for predicting the Signal-to-Noise-Ratio (SNR) of beams. Beam SNRs are predicted based on measured signal at the BS without the need to exchange information with UEs. In an offline training phase, we construct a beam-specific dimensionality reduction of Channel State Information (CSI) to a low-dimensional CC, annotate the CC with beam-wise SNRs and then train SNR predictors for different target beams. In the online phase, we predict target beam SNRs. K-nearest neighbors, Gaussian Process Regression and Neural Network based prediction are considered. Based on SNR difference between the serving and target beams a handover can be decided. To evaluate the efficiency of the proposed framework, we perform simulations for a street segment with synthetically generated CSI. SNR prediction accuracy of average root mean square error less than 0.3 dB is achieved. |
en |
dc.format.extent |
6 |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en |
en |
dc.relation |
info:eu-repo/grantAgreement/EC/H2020/813999/EU//WINDMILL |
|
dc.relation.ispartof |
European Conference on Networks and Communications |
en |
dc.relation.ispartofseries |
2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit) |
en |
dc.relation.ispartofseries |
European conference on networks and communications |
en |
dc.rights |
openAccess |
en |
dc.title |
Channel Charting Based Beam SNR Prediction |
en |
dc.type |
A4 Artikkeli konferenssijulkaisussa |
fi |
dc.description.version |
Peer reviewed |
en |
dc.contributor.department |
Communications Theory |
|
dc.contributor.department |
University of Electronic Science and Technology of China |
|
dc.contributor.department |
Department of Communications and Networking |
|
dc.identifier.urn |
URN:NBN:fi:aalto-202109028855 |
|
dc.identifier.doi |
10.1109/EuCNC/6GSummit51104.2021.9482548 |
|
dc.type.version |
acceptedVersion |
|