dc.contributor |
Aalto-yliopisto |
fi |
dc.contributor |
Aalto University |
en |
dc.contributor.author |
Jung, Alexander |
|
dc.contributor.author |
Sarcheshmehpour, Yasmin |
|
dc.date.accessioned |
2021-08-04T06:43:54Z |
|
dc.date.available |
2021-08-04T06:43:54Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
Jung , A & Sarcheshmehpour , Y 2021 , ' Local Graph Clustering with Network Lasso ' , IEEE Signal Processing Letters , vol. 28 , 9298875 , pp. 106-110 . https://doi.org/10.1109/LSP.2020.3045832 |
en |
dc.identifier.issn |
1070-9908 |
|
dc.identifier.issn |
1558-2361 |
|
dc.identifier.other |
PURE UUID: a15c89bc-6a9c-4d2d-818a-758cc2ae4d16 |
|
dc.identifier.other |
PURE ITEMURL: https://research.aalto.fi/en/publications/a15c89bc-6a9c-4d2d-818a-758cc2ae4d16 |
|
dc.identifier.other |
PURE LINK: http://www.scopus.com/inward/record.url?scp=85098748083&partnerID=8YFLogxK |
|
dc.identifier.other |
PURE FILEURL: https://research.aalto.fi/files/65676585/Local_Graph_Clustering_With_Network_Lasso.pdf |
|
dc.identifier.uri |
https://aaltodoc.aalto.fi/handle/123456789/108935 |
|
dc.description.abstract |
We study the statistical and computational properties of a network Lasso method for local graph clustering. The clusters delivered by nLasso can be characterized elegantly via network flows between cluster boundaries and seed nodes. While spectral clustering methods are guided by a minimization of the graph Laplacian quadratic form, nLasso minimizes the total variation of cluster indicator signals. As demonstrated theoretically and numerically, nLasso methods can handle very sparse clusters (chain-like) which are difficult for spectral clustering. We also verify that a primal-dual method for non-smooth optimization allows to approximate nLasso solutions with optimal worst-case convergence rate. |
en |
dc.format.extent |
5 |
|
dc.format.extent |
106-110 |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en |
en |
dc.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
|
dc.relation.ispartofseries |
IEEE Signal Processing Letters |
en |
dc.relation.ispartofseries |
Volume 28 |
en |
dc.rights |
openAccess |
en |
dc.title |
Local Graph Clustering with Network Lasso |
en |
dc.type |
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
fi |
dc.description.version |
Peer reviewed |
en |
dc.contributor.department |
Professorship Jung Alexander |
|
dc.contributor.department |
Sharif University of Technology |
|
dc.contributor.department |
Department of Computer Science |
en |
dc.subject.keyword |
Clustering methods |
|
dc.subject.keyword |
Convergence |
|
dc.subject.keyword |
Laplace equations |
|
dc.subject.keyword |
Message passing |
|
dc.subject.keyword |
Minimization |
|
dc.subject.keyword |
Optimization |
|
dc.subject.keyword |
TV |
|
dc.identifier.urn |
URN:NBN:fi:aalto-202108048179 |
|
dc.identifier.doi |
10.1109/LSP.2020.3045832 |
|
dc.type.version |
publishedVersion |
|