Learning Centre

On regularity of the logarithmic forward map of electrical impedance tomography

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Garde, Henrik
dc.contributor.author Hyvönen, Nuutti
dc.contributor.author Kuutela, Topi
dc.date.accessioned 2021-01-25T10:13:15Z
dc.date.available 2021-01-25T10:13:15Z
dc.date.issued 2020-01-09
dc.identifier.citation Garde , H , Hyvönen , N & Kuutela , T 2020 , ' On regularity of the logarithmic forward map of electrical impedance tomography ' , SIAM Journal on Mathematical Analysis , vol. 52 , no. 1 , pp. 197–220 . https://doi.org/10.1137/19M1256476 en
dc.identifier.issn 0036-1410
dc.identifier.issn 1095-7154
dc.identifier.other PURE UUID: 6a99772a-1e08-4856-a01d-813ad4526b67
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/6a99772a-1e08-4856-a01d-813ad4526b67
dc.identifier.other PURE LINK: http://www.scopus.com/inward/record.url?scp=85084176758&partnerID=8YFLogxK
dc.identifier.other PURE LINK: https://arxiv.org/abs/1904.06926
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/54867272/Garde_On_Regularity.19m1256476.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/102175
dc.description.abstract This work considers properties of the logarithm of the Neumann-to-Dirichlet boundary map for the conductivity equation in a Lipschitz domain. It is shown that the mapping from the (logarithm of) the conductivity, i.e., the (logarithm of) the coefficient in the divergence term of the studied elliptic partial differential equation, to the logarithm of the Neumann-to-Dirichlet map is continuously Frechet differentiable between natural topologies. Moreover, for any essentially bounded perturbation of the conductivity, the Frechet derivative defines a bounded linear operator on the space of square integrable functions living on the domain boundary, although the logarithm of the Neumann-to-Dirichlet map itself is unbounded in that topology. In particular, it follows from the fundamental theorem of calculus that the difference between the logarithms of any two Neumannto- Dirichlet maps is always bounded on the space of square integrable functions. All aforementioned results also hold if the Neumann-to-Dirichlet boundary map is replaced by its inverse, i.e., the Dirichlet-to-Neumann map. en
dc.format.extent 24
dc.format.extent 197–220
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher SIAM PUBLICATIONS
dc.relation.ispartofseries SIAM Journal on Mathematical Analysis en
dc.relation.ispartofseries Volume 52, issue 1 en
dc.rights openAccess en
dc.title On regularity of the logarithmic forward map of electrical impedance tomography en
dc.type A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.description.version Peer reviewed en
dc.contributor.department Aalborg University
dc.contributor.department Department of Mathematics and Systems Analysis
dc.identifier.urn URN:NBN:fi:aalto-202101251485
dc.identifier.doi 10.1137/19M1256476
dc.type.version publishedVersion


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

Statistics