Learning Centre

Block-wise minimization-majorization algorithm for huber's criterion: Sparse learning and applications

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Ollila, Esa
dc.contributor.author Mian, Ammar
dc.date.accessioned 2020-12-31T08:50:15Z
dc.date.available 2020-12-31T08:50:15Z
dc.date.issued 2020-09
dc.identifier.citation Ollila , E & Mian , A 2020 , Block-wise minimization-majorization algorithm for huber's criterion: Sparse learning and applications . in Proceedings of the 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing, MLSP 2020 . , 9231538 , IEEE International Workshop on Machine Learning for Signal Processing , IEEE , IEEE International Workshop on Machine Learning for Signal Processing , Espoo , Finland , 21/09/2020 . https://doi.org/10.1109/MLSP49062.2020.9231538 en
dc.identifier.isbn 9781728166629
dc.identifier.issn 2161-0363
dc.identifier.issn 2161-0371
dc.identifier.other PURE UUID: ed5768b0-b4e0-4379-9704-ddb858b1a091
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/ed5768b0-b4e0-4379-9704-ddb858b1a091
dc.identifier.other PURE LINK: http://www.scopus.com/inward/record.url?scp=85096468569&partnerID=8YFLogxK
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/53660153/Ollila_Block_wise_minimization_IEEEIWoMLSLP.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/101661
dc.description.abstract Huber's criterion can be used for robust joint estimation of regression and scale parameters in the linear model. Huber's [1] motivation for introducing the criterion stemmed from nonconvexity of the joint maximum likelihood objective function as well as non-robustness (unbounded influence function) of the associated ML-estimate of scale. In this paper, we illustrate how the original algorithm proposed by Huber can be set within the block-wise minimization majorization framework. In addition, we propose novel data-adaptive step sizes for both the location and scale, which are further improving the convergence. We then illustrate how Huber's criterion can be used for sparse learning of underdetermined linear model using the iterative hard thresholding approach. We illustrate the usefulness of the algorithms in an image denoising application and simulation studies. en
dc.format.extent 6
dc.format.mimetype application/pdf
dc.language.iso en en
dc.relation.ispartof IEEE International Workshop on Machine Learning for Signal Processing en
dc.relation.ispartofseries Proceedings of the 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing, MLSP 2020 en
dc.relation.ispartofseries IEEE International Workshop on Machine Learning for Signal Processing en
dc.rights openAccess en
dc.title Block-wise minimization-majorization algorithm for huber's criterion: Sparse learning and applications en
dc.type A4 Artikkeli konferenssijulkaisussa fi
dc.description.version Peer reviewed en
dc.contributor.department Dept Signal Process and Acoust
dc.contributor.department Esa Ollila Group
dc.subject.keyword Huber's criterion
dc.subject.keyword Minimization-majorization algorithm
dc.subject.keyword Robust regression
dc.subject.keyword Sparse learning
dc.identifier.urn URN:NBN:fi:aalto-2020123160482
dc.identifier.doi 10.1109/MLSP49062.2020.9231538
dc.type.version acceptedVersion


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

Statistics