Learning Centre

Predicting Mid-Air Interaction Movements and Fatigue Using Deep Reinforcement Learning

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Cheema, Noshaba
dc.contributor.author Frey-Law, Laura A.
dc.contributor.author Naderi, Kourosh
dc.contributor.author Lehtinen, Jaakko
dc.contributor.author Slusallek, Philipp
dc.contributor.author Hämäläinen, Perttu
dc.date.accessioned 2020-12-31T08:48:50Z
dc.date.available 2020-12-31T08:48:50Z
dc.date.issued 2020
dc.identifier.citation Cheema , N , Frey-Law , L A , Naderi , K , Lehtinen , J , Slusallek , P & Hämäläinen , P 2020 , Predicting Mid-Air Interaction Movements and Fatigue Using Deep Reinforcement Learning . in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems . , 572 , ACM , New York, NY, USA , pp. 1–13 , ACM SIGCHI Annual Conference on Human Factors in Computing Systems , Honolulu , Hawaii , United States , 26/04/2020 . https://doi.org/10.1145/3313831.3376701 en
dc.identifier.isbn 9781450367080
dc.identifier.other PURE UUID: d0a15f11-0457-49ac-955b-72605ab1d8b4
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/d0a15f11-0457-49ac-955b-72605ab1d8b4
dc.identifier.other PURE LINK: https://doi.org/10.1145/3313831.3376701
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/54100001/Cheema_Predicting.3313831.3376701.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/101634
dc.description.abstract A common problem of mid-air interaction is excessive arm fatigue, known as the "Gorilla arm" effect. To predict and prevent such problems at a low cost, we investigate user testing of mid-air interaction without real users, utilizing biomechanically simulated AI agents trained using deep Reinforcement Learning (RL). We implement this in a pointing task and four experimental conditions, demonstrating that the simulated fatigue data matches human fatigue data. We also compare two effort models: 1) instantaneous joint torques commonly used in computer animation and robotics, and 2) the recent Three Compartment Controller (3CC-) model from biomechanical literature. 3CC- yields movements that are both more efficient and relaxed, whereas with instantaneous joint torques, the RL agent can easily generate movements that are quickly tiring or only reach the targets slowly and inaccurately. Our work demonstrates that deep RL combined with the 3CC- provides a viable tool for predicting both interaction movements and user experiencein silico, without users. en
dc.format.extent 13
dc.format.extent 1–13
dc.format.mimetype application/pdf
dc.language.iso en en
dc.relation.ispartof ACM SIGCHI annual conference on human factors in computing systems en
dc.relation.ispartofseries Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems en
dc.rights openAccess en
dc.title Predicting Mid-Air Interaction Movements and Fatigue Using Deep Reinforcement Learning en
dc.type A4 Artikkeli konferenssijulkaisussa fi
dc.description.version Peer reviewed en
dc.contributor.department Max Planck Institute for Informatics
dc.contributor.department University of Iowa
dc.contributor.department Professorship Hämäläinen Perttu
dc.contributor.department Professorship Lehtinen Jaakko
dc.contributor.department Saarland University
dc.contributor.department Department of Computer Science en
dc.contributor.department Department of Media en
dc.subject.keyword biomechanical simulation
dc.subject.keyword reinforcement learning
dc.subject.keyword computational interaction
dc.subject.keyword user modeling
dc.identifier.urn URN:NBN:fi:aalto-2020123160455
dc.identifier.doi 10.1145/3313831.3376701
dc.type.version publishedVersion


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

Statistics