Browsing by Department "University of Granada"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Bituminous Binder and Bituminous Mixture Modified with Waste Polyethylene(2023) Tušar, Marjan; Poulikakos, Lily D.; Kakar, Muhammad Rafiq; Pasquini, Emiliano; Pasetto, Marco; Porot, Laurent; Wang, Di; Cannone Falchetto, Augusto; Carter, Alan; Orozco, Gabriel; Riccardi, Chiara; Vasconcelos, Kamilla; Varveri, Aikaterini; Jing, Ruxin; Pinheiro, Gustavo; Hernando, David; Mikhailenko, Peter; Stoop, Jan; Wouters, Lacy; Miljković, Miomir; Orešković, Marko; Viscione, Nunzio; Veropalumbo, Rosa; Saboo, Nikhil; Lachance-Tremblay, Éric; Vaillancourt, Michel; Bueche, Nicolas; Dalmazzo, Davide; Moreno-Navarro, Fernando; Lo Presti, Davide; Giancontieri, Gaspare; Slovenian National Building and Civil Engineering Institute; Swiss Federal Laboratories for Materials Science and Technology; University of Padova; Kraton Chemical B.V.; Department of Civil Engineering; École de technologie supérieure; University of Pisa; Universidade de São Paulo; Delft University of Technology; University of Antwerp; University of Niš; University of Belgrade; University of Naples Federico II; Indian institute of Technology Roorkee; Bern University of Applied Sciences; Polytechnic University of Turin; University of Granada; University of PalermoRILEM TC-279 WMR task group TG 1 studied the performance of waste Polyethylene (PE) in bituminous binders and bituminous mixtures. Several laboratories participated in this study following a common protocol. Locally sources aggregates and bituminous binder and same source of waste PE were utilized. The binder experiments showed that at high temperatures, using MSCR tests, PE modified blends had better resistance to permanent deformation in comparison to the non modified binder. Whereas at intermediate temperatures, using the LAS tests, fatigue performance of the PE blends could withstand more loading cycles under low strains; however, it could sustain less loading cycles under high strains due to the increase in brittleness. Dry process was used for the mixture experiments in order to bypass the stability and inhomogeneity experience that was observed at the binder scale. The PE modified mixtures showed improved workability and increased strength. The higher the PE dosage, the higher the ITS increase with respect to the values measured for the control materials (i.e., without any plastic waste) thanks to the improved cohesion of the plastic modified mastic. The stiffness experiments tended to show an improved performance with a lower time dependence and a higher elasticity when plastic was added. The cyclic compression tests demonstrated a reduced creep rate along with a higher creep modulus thanks to the addition of PE; similar conclusions can be drawn from the experimental findings coming from wheel tracking test. Furthermore, acceptable and often improved moisture resistance was observed for PE modified materials.Item A Complete LTE Mathematical Framework for the Network Slice Planning of the EPC(IEEE COMPUTER SOC, 2020-01-01) Prados-Garzon, Jonathan; Laghrissi, Abdelquoddouss; Bagaa, Miloud; Taleb, Tarik; M. Lopez-Soler, Juan; University of Granada; Department of Communications and Networking5G is the next telecommunications standards that will enable the sharing of physical infrastructures to provision ultra short-latency applications, mobile broadband services, Internet of Things, etc. Network slicing is the virtualization technique that is expected to achieve that, as it can allow logical networks to run on top of a common physical infrastructure and ensure service level agreement requirements for different services and applications. In this vein, our paper proposes a novel and complete solution for planning network slices of the LTE EPC, tailored for the enhanced Mobile BroadBand use case. The solution defines a framework which consists of: i) an abstraction of the LTE workload generation process, ii) a compound traffic model, iii) performance models of the whole LTE network, and iv) an algorithm to jointly perform the resource dimensioning and network embedding. Our results show that the aggregated signaling generation is a Poisson process and the data traffic exhibits self-similarity and long-range-dependence features. The proposed performance models for the LTE network rely on these results. We formulate the joint optimization problem of resources dimensioning and embedding of a virtualized EPC and propose a heuristic to solve it. By using simulation tools, we validate the proper operation of our solution.Item Optimization of Flow Allocation in Asynchronous Deterministic 5G Transport Networks by Leveraging Data Analytics(IEEE, 2021-07-26) Prados-Garzon, Jonathan; Taleb, Tarik; Bagaa, Miloud; University of Granada; Mobile Network Softwarization and Service Customization; CSC - IT Center for Science Ltd.; Department of Communications and NetworkingTime-Sensitive Networking (TSN) and Deterministic Networking (DetNet) technologies are increasingly recognized as key levers of the future 5G transport networks (TNs) due to their capabilities for providing deterministic Quality-ofService and enabling the coexistence of critical and best-effort services. Additionally, they rely on programmable and costeffective Ethernet-based forwarding planes. In this article, we address the flow allocation problem in 5G backhaul networks realized as asynchronous TSN networks, whose building block is the Asynchronous Traffic Shaper. We propose an offline solution, dubbed Next Generation Transport Network Optimizer (NEPTUNO), that combines exact optimization methods and heuristic techniques and leverages data analytics to solve the flow allocation problem. NEPTUNO aims to maximize the flow acceptance ratio while guaranteeing the deterministic Qualityof-service requirements of the critical flows. We carried out a performance evaluation of NEPTUNO in terms of the degree of optimality, execution time, and flow rejection ratio. Furthermore, we compare NEPTUNO with two online baseline solutions. Online methods compute the flows allocation configuration right after the flow arrives at the network, whereas offline solutions like NEPTUNO compute a long-term configuration allocation for the whole network. Our results highlight the potential of the data analytics for the self-optimization of the future 5G TNs.Item Planck 2015 results(2016-10-01) Ade, P. A R; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J. F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R. R.; Chiang, H. C.; Chluba, J.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P L; Combet, C.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; De Bernardis, P.; De Rosa, A.; De Zotti, G.; Delabrouille, J.; Désert, F. X.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Farhang, M.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Giusarma, E.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Maciás-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Maris, M.; Martin, P. G.; Martinelli, M.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mcgehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J. B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M. A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J. L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rouillé D'orfeuil, B.; Rowan-Robinson, M.; Rubinõ-Martín, J. A.; Rusholme, B.; Said, N.; Salvatelli, V.; Salvati, L.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Serra, P.; Shellard, E. P S; Spencer, L. D.; Spinelli, M.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A. S.; Sygnet, J. F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Väliviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D M; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.; Cardiff University; CNRS/IN2P3; Service d'Astrophysique CEA; Kavli Institute for Cosmology Cambridge; University of Cambridge; International School for Advanced Studies; IRAP; Universite de Toulouse; Instituto de Física de Cantabria (CSIC-Universidad de Cantabria); Jet Propulsion Laboratory, California Institute of Technology; AstroParticule et Cosmologie; Università Degli Studi di Padova; Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy; University of Granada; University of Manchester; UMR7095; CNRS; University College London; INAF/IASF Milano; Università degli Studi di Milano; Nicolaus Copernicus Astronomical Center; California Institute of Technology; University of Toronto; University of California at Berkeley; Lawrence Berkeley National Laboratory; Universite Paris Sorbonne - Paris IV; Institut d 'Astrophysique de Paris; INAF/IASF Bologna; Università di Ferrara; INFN, Sezione di Bologna; University of Oxford; UMR 5141; LERMA - Laboratoire d'Etudes du Rayonnement et de la Matiere en Astrophysique et Atmospheres; Laboratoire AIM, Service d’Astrophysique, DSM\IRFU, CEA\Saclay; Institut d'Astrophysique Spatiale; Princeton University; University of KwaZulu-Natal; Johns Hopkins University; Niels Bohr Institute; Stanford University; Imperial College London; University of Southern California; Universidad de Cantabria; Università La Sapienza; INAF, Osservatorio Astronomico di Padova; UMR 7095; Ludwig Maximilian University of Munich; Max-Planck-Institut für Astrophysik; Institut Universitaire de France; European Space Agcy, European Space Agency, ESAC, Planck Sci Off; University of Oslo; Shahid Beheshti University; Osservatorio Astronomico di Trieste; University of Chicago; National Taiwan University; Stockholms universitet; NORDITA; University of Warsaw; Università Degli Studi di Trieste; Istituto Nazionale di Fisica Nucleare; CERN; University of Sydney; McGill University; Centro de Estudios de la Física del Cosmos de Aragón; Technical University of Denmark; Florida State University; University of Helsinki; European Southern Observatory Santiago; ALMA Santiago Central Offices; University of California; Université de Genève; African Institute for Mathematical Sciences; Helsinki Institute of Physics; Aix Marseille Universite; Department of Radio Science and Engineering; Metsähovi Radio Observatory; INFN, Sezione di Ferrara; Centro de Gestão e Estudos Estratégicos; RWTH Aachen University; University of Sussex; INFN, Sezione di Padova; University of California, Santa Barbara; INAF, Osservatorio Astronomico di Trieste; Universite Paris-Sud; INFN, Sezione di Roma 1; University of Heidelberg; Gran Sasso Science Institute; CEA Saclay, CEA, DSM Irfu SPP; Inter-University Centre for Astronomy and Astrophysics; CNRS Centre National de la Recherche Scientifique; University of Nottingham; National University of Ireland; University of Copenhagen; ASI Science Data Center; RAS - Pn Lebedev Physics Institute; Haverford College; INAF, Osservatorio Astronomico di Roma; Institute for Space Sciences; Université Pierre and Marie Curie; Radboud University Nijmegen; Universities Space Research Association; Instituto Astrofisico de Canarias; CSIC; Universidad de La Laguna; Università di Roma Tor Vergata; Department of Applied Physics; ROTA – Topological superfluids; University of British Columbia; Special Astrophysical Observatory, Russian Academy of Sciences; Kazan Federal University; Space Research Institute, Russian Academy of Sciences; ESTEC - European Space Research and Technology Centre; Università degli Studi e-Campus; Universidad de Oviedo; Trinity College Dublin; INAF, Osservatorio Astrofisico di Catania; University of Illinois at Urbana-ChampaignThis paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted "base ΛCDM" in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low FrequencyInstrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of \hbox{$z-{\rm re}=8.8{+1.7}-{-1.4}$}. These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to â'mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w =-1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and onpossible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.Item Towards versatile access networks(2023-06-06) Ghoraishi, Mir; Alexiou, Angeliki; Cogalan, Tezcan; Conrat, Jean Marc; De Guzman, Mar Francis; Devoti, Francesco; Eappen, Geoffrey; Fang, Chao; Frenger, Pål; Girycki, Adam; Guo, Hao; Halbauer, Hardy; Haliloglu, Omer; Haneda, Katsuyuki; Koffman, Israel; Kyösti, Pekka; Leinonen, Marko; Li, Yinggang; Madapatha, Charitha; Makki, Behrooz; Navarro-Ortiz, Jorge; Nguyen, Le Hang; Nimr, Ahmad; Pärssinen, Aarno; Pollin, Sofie; Pryor, Simon; Puerta, Rafael; Rahman, Md Arifur; Ramos-Munoz, Juan J.; Ranjbar, Vida; Roth, Kilian; Sarajlic, Muris; Sciancalepore, Vincenzo; Svensson, Tommy; Tervo, Nuutti; Wolfgang, Andreas; Gigasys Solutions; University of Piraeus; Samsung; Orange; Department of Electronics and Nanoengineering; NEC Corporation; Brunel University London; Chalmers University of Technology; Ericsson AB; IS-Wireless; Nokia Solutions and Networks GmbH & Co. KG; RunEL; University of Oulu; Instituto Carlos I de Física Teórica y Computacional; Technische Universität Dresden; KU Leuven; Acceleran; University of Granada; Intel; Qamcom Research and Technology AB; Bulakçı, Ömer; Li, Xi; Gramaglia, Marco; Gavras, Anastasius; Uusitalo, Mikko; Rugeland, Patrik; Boldi, MauroCompared to its previous generations, the 5th generation (5G) cellular network features an additional type of densification, i.e., a large number of active antennas per access point (AP) can be deployed. This technique is known as massive multipleinput multiple-output (mMIMO) [1]. Meanwhile, multiple-input multiple-output (MIMO) evolution, e.g., in channel state information (CSI) enhancement, and also on the study of a larger number of orthogonal demodulation reference signal (DMRS) ports for MU-MIMO, was one of the Release 18 of 3rd generation partnership project (3GPP Rel-18) work item. This release (3GPP Rel-18) package approval, in the fourth quarter of 2021, marked the start of the 5G Advanced evolution in 3GPP. The other items in 3GPP Rel-18 are to study and add functionality in the areas of network energy savings, coverage, mobility support, multicast broadcast services, and positioning.