Browsing by Department "NanoMaterials"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
- Colors of Single-Wall Carbon Nanotubes
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2021-02-24) Wei, Nan; Tian, Ying; Liao, Yongping; Komatsu, Natsumi; Gao, Weilu; Lyuleeva-Husemann, Alina; Zhang, Qiang; Hussain, Aqeel; Ding, Er Xiong; Yao, Fengrui; Halme, Janne; Liu, Kaihui; Kono, Junichiro; Jiang, Hua; Kauppinen, Esko I.Although single-wall carbon nanotubes (SWCNTs) exhibit various colors in suspension, directly synthesized SWCNT films usually appear black. Recently, a unique one-step method for directly fabricating green and brown films has been developed. Such remarkable progress, however, has brought up several new questions. The coloration mechanism, potentially achievable colors, and color controllability of SWCNTs are unknown. Here, a quantitative model is reported that can predict the specific colors of SWCNT films and unambiguously identify the coloration mechanism. Using this model, colors of 466 different SWCNT species are calculated, which reveals a broad spectrum of potentially achievable colors of SWCNTs. The calculated colors are in excellent agreement with existing experimental data. Furthermore, the theory predicts the existence of many brilliantly colored SWCNT films, which are experimentally expected. This study shows that SWCNTs as a form of pure carbon, can display a full spectrum of vivid colors, which is expected to complement the general understanding of carbon materials. - Hybrid Low-Dimensional Carbon Allotropes Formed in Gas Phase
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2020-11-04) Ahmad, Saeed; Mustonen, Kimmo; McLean, Ben; Jiang, Hua; Zhang, Qiang; Hussain, Aqeel; Khan, Abu Taher; Ding, Er Xiong; Liao, Yongping; Wei, Nan; Monazam, Mohammad R.A.; Nasibulin, Albert G.; Kotakoski, Jani; Page, Alister J.; Kauppinen, Esko I.Graphene, carbon nanotubes (CNTs) and fullerenes are the basic set of low-dimensional carbon allotropes. The latter two arise from the former by selective removal and addition of carbon atoms. Nevertheless, given their morphological disparities, the production of each is typically devised from entirely different starting points. Here, it is demonstrated that all three allotropes can nucleate from (pseudo-)spherical, nanometer-sized transition metal clusters in a gas-suspension when the chemical conditions are favorable. The experimental results indicate that graphitic carbon embryos nucleate on the catalyst particles and sometimes transform into 2D graphene flakes through chain polymerization of carbon fragments forming in the surround gas atmosphere. It is further shown that hydrogenation reactions play an essential role by stabilizing the emerging flakes by mitigating the pentagon and heptagon defects that lead into evolution of fulleroids. Ab initio molecular dynamics simulations show that the ratio of hydrogen to carbon in the reaction is a key growth parameter. Since structural formation takes place in a gas-suspension, graphene accompanied by fullerenes and single-walled CNTs can be deposited on any surface at ambient temperature with arbitrary layer thicknesses. This provides a direct route for the production and deposition of graphene-based hybrid thin films for various applications. - Ultrafast THz spectroscopy of carbon nanotube-graphene composites
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2023-10-01) Burdanova, Maria G.; Tsapenko, Alexey P.; Ahmad, Saeed; Kauppinen, Esko I.; Lloyd-Hughes, JamesMixed nanomaterial composites can combine the excellent properties of well-known low-dimensional nanomaterials. Here we highlight the potential of one-dimensional single-walled carbon nanotubes interfaced with two-dimensional graphene by exploring the composite’s ac conductivity and photoconductivity, and the influence of HAuCl4 doping. In the composite, the equilibrium terahertz conductivity from free carrier motion was boosted, while the localised plasmon peak shifted towards higher frequencies, which we attribute to shorter conductivity pathways in the composite. A negative terahertz photoconductivity was observed for all samples under 410 nm optical excitation and was reproduced by a simple model, where the Drude spectral weight and the momentum scattering rate were both lowered under photoexcitation. The composite had an enhanced modulation depth in comparison to reference carbon nanotube films, while retaining their characteristically fast (picosecond) response time. The results show that carbon nanotube-graphene composites offer new opportunities in devices by controlling charge carrier transport and tuning their optoelectronic properties.