Browsing by Department "Eindhoven University of Technology"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item A bifacial colour-tunable system via combination of a cholesteric liquid crystal network and hydrogel(ROYAL SOC CHEMISTRY, 2020-08-14) Wani, Owies M.; Schenning, Albertus P. H. J.; Priimagi, Arri; Molecular Materials; Eindhoven University of Technology; Tampere University; Department of Applied PhysicsWe present a colour tunable system obtained by combining a humidity-responsive cholesteric liquid crystal network and hydrogel coatings, in a diligently designed cell-geometry. The design enables sensitive colour tuningviatemperature-induced changes in humidity inside the cell. Uniquely, the system exhibits a bifacial response, causing either a blue- or red-shift in the reflected color when heated from opposite sides.Item An ETH-Tight Exact Algorithm for Euclidean TSP(Society for Industrial and Applied Mathematics (SIAM), 2023) de Berg, Mark; Bodlaender, Hans L.; Kisfaludi-Bak, Sándor; Kolay, Sudeshna; Eindhoven University of Technology; Utrecht University; Department of Computer Science; Indian Institute of Technology Kharagpur; Department of Computer ScienceWe study exact algorithms for Metric TSP in ℝd. In the early 1990s, algorithms with (Formula Presented) running time were presented for the planar case, and some years later an algorithm with (Formula Presnted) running time was presented for any d\geqslant 2. Despite significant interest in subexponential exact algorithms over the past decade, there has been no progress on Metric TSP, except for a lower bound stating that the problem admits no (Formula Presented) algorithm unless ETH fails. In this paper we settle the complexity of Metric TSP, up to constant factors in the exponent and under ETH, by giving an algorithm with running time (Formula Presented).Item How can airborne transmission of COVID-19 indoors be minimised?(Elsevier Limited, 2020-09) Morawska, Lidia; Tang, Julian W.; Bahnfleth, William; Bluyssen, Philomena M.; Boerstra, Atze; Buonanno, Giorgio; Cao, Junji; Dancer, Stephanie; Floto, Andres; Franchimon, Francesco; Haworth, Charles; Hogeling, Jaap; Isaxon, Christina; Jimenez, Jose L.; Kurnitski, Jarek; Li, Yuguo; Loomans, Marcel; Marks, Guy; Marr, Linsey C.; Mazzarella, Livio; Melikov, Arsen Krikor; Miller, Shelly; Milton, Donald K.; Nazaroff, William; Nielsen, Peter V.; Noakes, Catherine; Peccia, Jordan; Querol, Xavier; Sekhar, Chandra; Seppänen, Olli; Tanabe, Shin ichi; Tellier, Raymond; Tham, Kwok Wai; Wargocki, Pawel; Wierzbicka, Aneta; Yao, Maosheng; Queensland University of Technology; University of Leicester; Pennsylvania State University; Delft University of Technology; Federation of European Heating, Ventilation and Air Conditioning Associations (REHVA); University of Cassino and Southern Lazio; Chinese Academy of Sciences; Edinburgh Napier University; University of Cambridge; Franchimon ICM; ISSO, Kennisinstituut voor de installatiesector; Lund University; University of Colorado Boulder; Tallinn University of Technology; University of Hong Kong; Eindhoven University of Technology; University of New South Wales; Virginia Tech; Polytechnic University of Milan; Danmarks Tekniske Universitet; University of Maryland, College Park; University of California at Berkeley; Aalborg University; University of Leeds; Yale University; CSIC; National University of Singapore; Aalto University; Architectural Institute of Japan; McGill University; Peking UniversityDuring the rapid rise in COVID-19 illnesses and deaths globally, and notwithstanding recommended precautions, questions are voiced about routes of transmission for this pandemic disease. Inhaling small airborne droplets is probable as a third route of infection, in addition to more widely recognized transmission via larger respiratory droplets and direct contact with infected people or contaminated surfaces. While uncertainties remain regarding the relative contributions of the different transmission pathways, we argue that existing evidence is sufficiently strong to warrant engineering controls targeting airborne transmission as part of an overall strategy to limit infection risk indoors. Appropriate building engineering controls include sufficient and effective ventilation, possibly enhanced by particle filtration and air disinfection, avoiding air recirculation and avoiding overcrowding. Often, such measures can be easily implemented and without much cost, but if only they are recognised as significant in contributing to infection control goals. We believe that the use of engineering controls in public buildings, including hospitals, shops, offices, schools, kindergartens, libraries, restaurants, cruise ships, elevators, conference rooms or public transport, in parallel with effective application of other controls (including isolation and quarantine, social distancing and hand hygiene), would be an additional important measure globally to reduce the likelihood of transmission and thereby protect healthcare workers, patients and the general public.Item Overview of ASDEX Upgrade results(2017-10) Aguiam, D.; Aho-Mantila, L.; Angioni, C.; Arden, N.; Parra, R. Arredondo; Asunta, O.; de Baar, M.; Balden, M.; Behler, K.; Bergmann, A.; Bernardo, J.; Bernert, M.; Beurskens, M.; Biancalani, A.; Bilato, R.; Birkenmeier, G.; Bobkov, V.; Bock, A.; Bogomolov, A.; Bolzonella, T.; Boeswirth, B.; Bottereau, C.; Bottino, A.; van den Brand, H.; Brezinsek, S.; Brida, D.; Brochard, F.; Bruhn, C.; Buchanan, J.; Buhler, A.; Burckhart, A.; Cambon-Silva, D.; Camenen, Y.; Carvalho, P.; Carrasco, G.; Cazzaniga, C.; Carr, M.; Carralero, D.; Casali, L.; Castaldo, C.; Cavedon, M.; Challis, C.; Chankin, A.; Chapman, I.; Clairet, F.; Classen, I.; Coda, S.; Coelho, R.; Coenen, J. W.; Colas, L.; Conway, G.; Costea, S.; Coster, D. P.; Croci, G.; Cseh, G.; Czarnecka, A.; D'Arcangelo, O.; Day, C.; Delogu, R.; de Marne, P.; Denk, S.; Denner, P.; Dibon, M.; D'Inca, R.; Di Siena, A.; Douai, D.; Drenik, A.; Drube, R.; Dunne, M.; Duval, B. P.; Dux, R.; Eich, T.; Elgeti, S.; Engelhardt, K.; Erdos, B.; Erofeev, I.; Esposito, B.; Fable, E.; Faitsch, M.; Fantz, U.; Faugel, H.; Felici, F.; Fietz, S.; Figueredo, A.; Fischer, R.; Ford, O.; Frassinetti, L.; Freethy, S.; Froeschle, M.; Fuchert, G.; Fuchs, J. C.; Fuenfgelder, H.; Galazka, K.; Galdon-Quiroga, J.; Gallo, A.; Gao, Y.; Garavaglia, S.; Garcia-Munoz, M.; Geiger, B.; Cianfarani, C.; Giannone, L.; Giovannozzi, E.; Gleason-Gonzalez, C.; Gloeggler, S.; Gobbin, M.; Goerler, T.; Goodman, T.; Gorini, G.; Gradic, D.; Graeter, A.; Granucci, G.; Greuner, H.; Griener, M.; Groth, M.; Gude, A.; Guenter, S.; Guimarais, L.; Haas, G.; Hakola, A. H.; Ham, C.; Happel, T.; Harrison, J.; Hatch, D.; Hauer, V.; Hayward, T.; Heinemann, B.; Heinzel, S.; Hellsten, T.; Henderson, S.; Hennequin, P.; Herrmann, A.; Heyn, E.; Hitzler, F.; Hobirk, J.; Hoelzl, M.; Hoeschen, T.; Holm, J. H.; Hopf, C.; Hoppe, F.; Horvath, L.; Houben, A.; Huber, A.; Igochine, V.; Ilkei, T.; Ivanova-Stanik, I.; Jacob, W.; Jacobsen, A. S.; Jacquot, J.; Janky, F.; Jardin, A.; Jaulmes, F.; Jenko, F.; Jensen, T.; Joffrin, E.; Kaesemann, C.; Kallenbach, A.; Kalvin, S.; Kantor, M.; Kappatou, A.; Kardaun, O.; Karhunen, J.; Kasilov, S.; Kernbichler, W.; Kim, D.; Kimmig, S.; Kirk, A.; Klingshirn, H. -J.; Koch, F.; Kocsis, G.; Koehn, A.; Kraus, M.; Krieger, K.; Krivska, A.; Kraemr-Flecken, A.; Kurki-Suonio, T.; Kurzan, B.; Lackner, K.; Laggner, F.; Lang, P. T.; Lauber, P.; Lazanyi, N.; Lazaros, A.; Lebschy, A.; Li, L.; Li, M.; Liang, Y.; Lipschultz, B.; Liu, Y.; Lohs, A.; Luhmann, N. C.; Lunt, T.; Lyssoivan, A.; Madsen, J.; Maier, H.; Maj, O.; Mailloux, J.; Maljaars, E.; Manas, P.; Mancini, A.; Manhard, A.; Manso, M. -E.; Mantica, P.; Mantsinen, M.; Manz, P.; Maraschek, M.; Martens, C.; Martin, P.; Marrelli, L.; Martitsch, A.; Mastrostefano, S.; Mayer, A.; Mayer, M.; Mazon, D.; McCarthy, P. J.; McDermott, R.; Meisl, G.; Meister, H.; Medvedeva, A.; Merkel, P.; Merkel, R.; Merle, A.; Mertens, V.; Meshcheriakov, D.; Meyer, H.; Meyer, O.; Miettunen, J.; Milanesio, D.; Mink, F.; Mlynek, A.; Monaco, F.; Moon, C.; Nazikian, R.; Nemes-Czopf, A.; Neu, G.; Neu, R.; Nielsen, A. H.; Nielsen, S. K.; Nikolaeva, V.; Nocente, M.; Noterdaeme, J. -M.; Nowak, S.; Oberkofler, M.; Oberparleiter, M.; Ochoukov, R.; Odstrcil, T.; Olsen, J.; Orain, F.; Palermo, F.; Papp, G.; Perez, I. Paradela; Pautasso, G.; Enzel, F.; Petersson, P.; Pinzon, J.; Piovesan, P.; Piron, C.; Plaum, B.; Ploeckl, B.; Plyusnin, V.; Pokol, G.; Poli, E.; Porte, L.; Potzel, S.; Prisiazhniuk, D.; Puetterich, T.; Ramisch, M.; Rapson, C.; Rasmussen, J.; Raupp, G.; Refy, D.; Reich, M.; Reimold, F.; Ribeiro, T.; Riedl, R.; Rittich, D.; Rocchi, G.; Rodriguez-Ramos, M.; Rohde, V.; Ross, A.; Rott, M.; Rubel, M.; Ryan, D.; Ryter, F.; Saarelma, S.; Salewski, M.; Salmi, A.; Sanchis-Sanchez, L.; Santos, G.; Santos, J.; Sauter, O.; Scarabosio, A.; Schall, G.; Schmid, K.; Schmitz, O.; Schneider, P. A.; Schneller, M.; Schrittwieser, R.; Schubert, M.; Schwarz-Selinger, T.; Schweinzer, J.; Scott, B.; Sehmer, T.; Sertoli, M.; Shabbir, A.; Shalpegin, A.; Shao, L.; Sharapov, S.; Siccinio, M.; Sieglin, B.; Sigalov, A.; Silva, A.; Silva, C.; Simon, P.; Simpson, J.; Snicker, A.; Sommariva, C.; Sozzi, C.; Spolaore, M.; Stejner, M.; Stober, J.; Stobbe, F.; Stroth, U.; Strumberger, E.; Suarez, G.; Sugiyama, K.; Sun, H. -J.; Suttrop, W.; Szepesi, T.; Tal, B.; Tala, T.; Tardini, G.; Tardocchi, M.; Terranova, D.; Tierens, W.; Told, D.; Tudisco, O.; Trevisan, G.; Treutterer, W.; Trier, E.; Tripsky, M.; Valisa, M.; Valovic, M.; Vanovac, B.; Varela, P.; Varoutis, S.; Verdoolaege, G.; Vezinet, D.; Vianello, N.; Vicente, J.; Vierle, T.; Viezzer, E.; von Toussaint, U.; Wagner, D.; Wang, N.; Wang, X.; Weidl, M.; Weiland, M.; White, A. E.; Willensdorfer, M.; Wiringer, B.; Wischmeier, M.; Wolf, R.; Wolfrum, E.; Xiang, L.; Yang, Q.; Yang, Z.; Yu, Q.; Zagorski, R.; Zammuto, I.; Zarzoso, D.; Zhang, W.; van Zeeland, M.; Zehetbauer, T.; Zilker, M.; Zoletnik, S.; Zohm, H.; IST; VTT Technical Research Centre of Finland; Max Planck Inst Astrophys, Max Planck Society; Department of Applied Physics; TEC; JET EFDA, Culham Sci Ctr; Technische Universität München; Consorzio RFX; IRFM; Assoc EURATOM FZJ, Euratom, Julich Research Center, Forschungszentrum Julich, Inst Energy & Climate Res; University of Lorraine; ENEA; Istituto Fisica del Plasma "Piero Caldirola" (IFP-CNR); Swiss Federal Institute of Technology Lausanne; Innsbruck Medical University; Hungarian Academy of Sciences; Institute of Plasma Physics & Laser Microfusion (IFPiLM); Karlsruhe Institute of Technology; Eindhoven University of Technology; Swedish Research Council (VR); General Atomics & Affiliated Companies; University of Sevilla; University of Texas at Austin; Max Planck Comp & Data Facil; Ecole Polytechnique; Hochschule der Medien; Technical University of Denmark; Budapest University of Technology and Economics; University of California at Santa Barbara; School services, SCI; LPP-ERM/KMS EURATOM Association; Vienna University of Technology; Assoc EURATOM Hellen Republ, NCSR Demokritos; IPP; York University; CCFE Fusion Assoc; BSC; Univ Coll Cork UCC; Princeton University; Ghent University; Chinese Acad Sci, Chinese Academy of Sciences, Natl Astron Observ; Department of Radio Science and Engineering; Massachusetts Institute of Technology; Chinese Academy of Sciences; Univ Aix Marseille 1, Centre National de la Recherche Scientifique (CNRS), University of Aix-Marseille, Universite de Provence - Aix-Marseille I, UMR 6098, CNRSThe ASDEX Upgrade (AUG) programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. Since 2015, AUG is equipped with a new pair of 3-strap ICRF antennas, which were designed for a reduction of tungsten release during ICRF operation. As predicted, a factor two reduction on the ICRF-induced W plasma content could be achieved by the reduction of the sheath voltage at the antenna limiters via the compensation of the image currents of the central and side straps in the antenna frame. There are two main operational scenario lines in AUG. Experiments with low collisionality, which comprise current drive, ELM mitigation/suppression and fast ion physics, are mainly done with freshly boronized walls to reduce the tungsten influx at these high edge temperature conditions. Full ELM suppression and non-inductive operation up to a plasma current of I-p = 0.8 MA could be obtained at low plasma density. Plasma exhaust is studied under conditions of high neutral divertor pressure and separatrix electron density, where a fresh boronization is not required. Substantial progress could be achieved for the understanding of the confinement degradation by strong D puffing and the improvement with nitrogen or carbon seeding. Inward/outward shifts of the electron density profile relative to the temperature profile effect the edge stability via the pressure profile changes and lead to improved/decreased pedestal performance. Seeding and D gas puffing are found to effect the core fueling via changes in a region of high density on the high field side (HFSHD). The integration of all above mentioned operational scenarios will be feasible and naturally obtained in a large device where the edge is more opaque for neutrals and higher plasma temperatures provide a lower collisionality. The combination of exhaust control with pellet fueling has been successfully demonstrated. High divertor enrichment values of nitrogen E-N >= 10 have been obtained during pellet injection, which is a prerequisite for the simultaneous achievement of good core plasma purity and high divertor radiation levels. Impurity accumulation observed in the all-metal AUG device caused by the strong neoclassical inward transport of tungsten in the pedestal is expected to be relieved by the higher neoclassical temperature screening in larger devices.Item Towards an interdisciplinary employee-workplace alignment theory(Routledge, 2021) Appel-Meulenbroek, Rianne; Colenberg, Susanne; Danivska, Vitalija; Eindhoven University of Technology; Delft University of Technology; Department of Built Environment; Appel-Meulenbroek, Rianne; Danivska, VitalijaMany theories from different research disciplines apply to workplace design and management. This chapter describes a first attempt to integrate 21 of those theories into an overall employee-workplace alignment (EWA) framework, as a starting point towards developing a grand EWA theory. Through concept mapping, the tacit knowledge underlying each theory was made explicit in three to five statements that were sorted by 22 experts. By performing multidimensional scaling and cluster analysis, the statements were grouped into eight concepts that reflect the essence of the 21 theories within three regions of meaning: ‘Need-Supply Alignment’, ‘Cognition and Behaviour’, and ‘Organisational Context’. The framework created from the eight concepts connects the different theories in many ways. A further discussion of the three regions and underlying concepts of the framework, in relation to existing workplace research and theory, identifies many research gaps that need attention before the EWA theory can be fully developed. The chapter ends with implications for practice and some closing words for the entire book. © 2021 selection and editorial matter, Rianne Appel-Meulenbroek, Susanne Colenberg, and Vitalija Danivska.