[diss] Perustieteiden korkeakoulu / SCI
Permanent URI for this collection
Browse
Browsing [diss] Perustieteiden korkeakoulu / SCI by Department "Department of Micro and Nanosciences"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Alkali-metal atoms in laser fields: optical pumping, coherent population trapping, and laser cooling(Aalto-yliopiston teknillinen korkeakoulu, 2010) Lindvall, Thomas; Mikro- ja nanotekniikan laitos; Department of Micro and Nanosciences; Aalto-yliopiston teknillinen korkeakoulu; Tittonen, Ilkka, Prof.Alkali metals have played an important role in optical and atomic physics from the very beginning. This thesis deals with three aspects and applications of alkali-metal atoms, in particular rubidium (Rb). Optical pumping changes both the amplitudes and the center positions of the absorption profiles in the Doppler-broadened D-line spectra of the alkali-metal atoms. This effect has been studied by reducing the multilevel system to an effective three-level system and by treating the finite interaction time and collisions with the vapor-cell walls in two different ways: as ground-state relaxation and by averaging the time-dependent absorption over the distribution of interaction times. The former is a computationally efficient way to compare theoretical spectra to experimental results, and the latter reveals lineshape details that are due to the coupling between the Doppler shift and the interaction times through the longitudinal velocity of the atoms. Using coherent population trapping (CPT) in 85Rb, an all-optical atomic clock has been realized. The good noise properties of the diode laser, an optimized buffer gas, and a very low light intensity allow detection of ultranarrow CPT resonances < 20 Hz, apparently the narrowest optically induced hyperfine CPT resonance ever measured. The Q value of this resonance, 1.5 × 108, is comparable to Q values in cesium clocks and the stability of the CPT clock is sufficient for many high-precision applications. Trapping of Rb atoms in microscopic magneto-optical traps (MOTs) a few hundred micrometers from the surface of an optically transparent ferrite-garnet permanent-magnet atom chip has been demonstrated. The required magnetic fields are created by magnetic patterns magneto-optically written into the ferrite-garnet film and the transparency of the chip allows using a conventional MOT geometry. The magnetic patterns can be erased and re-written in situ, even during the experiments. Magnetic traps with a trap depth up to 1 mK could be realized using this type of atom chip.Item Design and characterization of monolithic millimeter-wave active and passive components, low-noise and power amplifiers, resistive mixers, and radio front-ends(Aalto-yliopiston teknillinen korkeakoulu, 2010) Varonen, Mikko; Mikro- ja nanotekniikan laitos; Department of Micro and Nanosciences; Aalto-yliopiston teknillinen korkeakoulu; Halonen, Kari, Prof.This thesis focuses on the design and characterization of monolithic active and passive components, low-noise and power amplifiers, resistive mixers, and radio front-ends for millimeter-wave applications. The thesis consists of 11 publications and an overview of the research area, which also summarizes the main results of the work. In the design of millimeter-wave active and passive components the main focus is on realized CMOS components and techniques for pushing nanoscale CMOS circuits beyond 100 GHz. Test structures for measuring and analyzing these components are shown. Topologies for a coplanar waveguide, microstrip line, and slow-wave coplanar waveguide that are suitable for implementing transmission lines in nanoscale CMOS are presented. It is demonstrated that the proposed slow-wave coplanar waveguide improves the performance of the transistor-matching networks when compared to a conventional coplanar waveguide and the floating slow-wave shield reduces losses and simplifies modeling when extended below other passives, such as DC decoupling and RF short-circuiting capacitors. Furthermore, wideband spiral transmission line baluns in CMOS at millimeter-wave frequencies are demonstrated. The design of amplifiers and a wideband resistive mixer utilizing the developed components in 65-nm CMOS are shown. A 40-GHz amplifier achieved a +6-dBm 1-dB output compression point and a saturated output power of 9.6 dBm with a miniature chip size of 0.286 mm². The measured noise figure and gain of the 60-GHz amplifier were 5.6 dB and 11.5 dB, respectively. The V-band balanced resistive mixer achieved a 13.5-dB upconversion loss and 34-dB LO-to-RF isolation with a chip area of 0.47 mm². In downconversion, the measured conversion loss and 1-dB input compression point were 12.5 dB and +5 dBm, respectively. The design and experimental results of low-noise and power amplifiers are presented. Two wideband low-noise amplifiers were implemented in a 100-nm metamorphic high electron mobility transistor (HEMT) technology. The amplifiers achieved a 22.5-dB gain and a 3.3-dB noise figure at 94 GHz and a 18-19-dB gain and a 5.5-7.0-dB noise figure from 130 to 154 GHz. A 60-GHz power amplifier implemented in a 150-nm pseudomorphic HEMT technology exhibited a +17-dBm 1-dB output compression point with a 13.4-dB linear gain. In this thesis, the main system-level aspects of millimeter-wave transmitters and receivers are discussed and the experimental circuits of a 60-GHz transmitter front-end and a 60-GHz receiver with an on-chip analog-to-digital converter implemented in 65-nm CMOS are shown. The receiver exhibited a 7-dB noise figure, while the saturated output power of the transmitter front-end was +2 dBm. Furthermore, a wideband W-band transmitter front-end with an output power of +6.6 dBm suitable for both image-rejecting superheterodyne and direct-conversion transmission is demonstrated in 65-nm CMOS.Item Integrated interface electronics for capacitive MEMS inertial sensors(Aalto-yliopiston teknillinen korkeakoulu, 2010) Aaltonen, Lasse; Mikro- ja nanotekniikan laitos; Department of Micro and Nanosciences; Aalto-yliopiston teknillinen korkeakoulu; Halonen, Kari, Prof.This thesis is composed of 13 publications and an overview of the research topic, which also summarizes the work. The research presented in this thesis concentrates on integrated circuits for the realization of interface electronics for capacitive MEMS (micro-electro-mechanical system) inertial sensors, i.e. accelerometers and gyroscopes. The research focuses on circuit techniques for capacitive detection and actuation and on high-voltage and clock generation within the sensor interface. Characteristics of capacitive accelerometers and gyroscopes and the electronic circuits for accessing the capacitive information in open- and closed-loop configurations are introduced in the thesis. One part of the experimental work, an accelerometer, is realized as a continuous-time closed-loop sensor, and is capable of achieving sub-micro-g resolution. The interface electronics is implemented in a 0.7-µm high-voltage technology. It consists of a force feedback loop, clock generation circuits, and a digitizer. Another part of the experimental work, an analog 2-axis gyroscope, is optimized not only for noise, but predominantly for low power consumption and a small chip area. The implementation includes a pseudo-continuous-time sense readout, analog continuous-time drive loop, phase-locked loop (PLL) for clock generation, and high-voltage circuits for electrostatic excitation and high-voltage detection. The interface is implemented in a 0.35-µm high-voltage technology within an active area of 2.5 mm². The gyroscope achieves a spot noise of 0.015 °/s/√H̅z̅ for the x-axis and 0.041 °/s/√H̅z̅ for the y-axis. Coherent demodulation and discrete-time signal processing are often an important part of the sensors and also typical examples that require clock signals. Thus, clock generation within the sensor interfaces is also reviewed. The related experimental work includes two integrated charge pump PLLs, which are optimized for compact realization but also considered with regard to their noise performance. Finally, this thesis discusses fully integrated high-voltage generation, which allows a higher electrostatic force and signal current in capacitive sensors. Open- and closed-loop Dickson charge pumps and high-voltage amplifiers have been realized fully on-chip, with the focus being on optimizing the chip area and on generating precise spurious free high-voltage signals up to 27 V.Item Integrated reference circuits for low-power capacitive sensor interfaces(Aalto-yliopiston teknillinen korkeakoulu, 2010) Paavola, Matti; Mikro- ja nanotekniikan laitos; Department of Micro and Nanosciences; Aalto-yliopiston teknillinen korkeakoulu; Halonen, Kari, Prof.This thesis consists of nine publications and an overview of the research topic, which also summarizes the work. The research described in this thesis concentrates on the design of low-power sensor interfaces for capacitive 3-axis micro-accelerometers. The primary goal throughout the thesis is to optimize power dissipation. Because the author made the main contribution to the design of the reference and power management circuits required, the overview part is dominated by the following research topics: current, voltage, and temperature references, frequency references, and voltage regulators. After an introduction to capacitive micro-accelerometers, the work describes the typical integrated readout electronics of a capacitive sensor on the functional level. The readout electronics can be divided into four different functional parts, namely the sensor readout itself, signal post-processing, references, and power management. Before the focus is shifted to the references and further to power management, different ways to realize the sensor readout are briefly discussed. Both current and voltage references are required in most analog and mixed-signal systems. A bandgap voltage reference, which inherently uses at least one current reference, is practical for the generation of an accurate reference voltage. Very similar circuit techniques can be exploited when implementing a temperature reference, the need for which in the sensor readout may be justified by the temperature compensation, for example. The work introduces non-linear frequency references, namely ring and relaxation oscillators, which are very suitable for the generation of the relatively low-frequency clock signals typically needed in the sensor interfaces. Such oscillators suffer from poor jitter and phase noise performance, the quantities of which also deserve discussion in this thesis. Finally, the regulation of the supply voltage using linear regulators is considered. In addition to extending the battery life by providing a low quiescent current, the regulator must be able to supply very low load currents and operate without off-chip capacitors.Item Integrated RF oscillators and LO signal generation circuits(Aalto-yliopiston teknillinen korkeakoulu, 2010) Stadius, Kari; Mikro- ja nanotekniikan laitos; Department of Micro and Nanosciences; Aalto-yliopiston teknillinen korkeakoulu; Halonen, Kari, Prof.This thesis deals with fully integrated LC oscillators and local oscillator (LO) signal generation circuits. In communication systems a good-quality LO signal for up- and down-conversion in transmitters is needed. The LO signal needs to span the required frequency range and have good frequency stability and low phase noise. Furthermore, most modern systems require accurate quadrature (IQ) LO signals. This thesis tackles these challenges by presenting a detailed study of LC oscillators, monolithic elements for good-quality LC resonators, and circuits for IQ-signal generation and for frequency conversion, as well as many experimental circuits. Monolithic coils and variable capacitors are essential, and this thesis deals with good structures of these devices and their proper modeling. As experimental test devices, over forty monolithic inductors and thirty varactors have been implemented, measured and modeled. Actively synthesized reactive elements were studied as replacements for these passive devices. At first glance these circuits show promising characteristics, but closer noise and nonlinearity analysis reveals that these circuits suffer from high noise levels and a small dynamic range. Nine circuit implementations with various actively synthesized variable capacitors were done. Quadrature signal generation can be performed with three different methods, and these are analyzed in the thesis. Frequency conversion circuits are used for alleviating coupling problems or to expand the number of frequency bands covered. The thesis includes an analysis of single-sideband mixing, frequency dividers, and frequency multipliers, which are used to perform the four basic arithmetical operations for the frequency tone. Two design cases are presented. The first one is a single-sideband mixing method for the generation of WiMedia UWB LO-signals, and the second one is a frequency conversion unit for a digital period synthesizer. The last part of the thesis presents five research projects. In the first one a temperature-compensated GaAs MESFET VCO was developed. The second one deals with circuit and device development for an experimental-level BiCMOS process. A cable-modem RF tuner IC using a SiGe process was developed in the third project, and a CMOS flip-chip VCO module in the fourth one. Finally, two frequency synthesizers for UWB radios are presented.Item Low-power front-ends for capacitive three-axis accelerometers(Aalto-yliopiston teknillinen korkeakoulu, 2010) Kämäräinen, Mika; Mikro- ja nanotekniikan laitos; Department of Micro and Nanosciences; Aalto-yliopiston teknillinen korkeakoulu; Halonen, Kari, Prof.This thesis consists of six publications and an overview of the research topic. The overview concentrates on background information of the capacitive accelerometers and front-ends. The publications focus on two low-power front-ends that were implemented for capacitive three-axis accelerometers and their operation as a part of an interface. The switched-capacitor front-ends that were implemented are based on the charge-balancing structures, namely a self-balancing bridge and a ΔΣ front-end, which convert the capacitive acceleration information to analog and digital signals, respectively. Both structures operate mechanically in open-loop configuration and are capable of reducing the effects of the electrostatic forces and displacement-to-capacitance conversion. According to the performance comparison presented in this thesis, both interfaces, which were implemented around the front-ends, exhibit competitive performance when compared to the commercial products of the day.Item Microfabrication of heated nebulizer chips for mass spectrometry(Aalto-yliopiston teknillinen korkeakoulu, 2010) Saarela, Ville; Franssila, Sami, Prof.; Mikro- ja nanotekniikan laitos; Department of Micro and Nanosciences; Aalto-yliopiston teknillinen korkeakoulu; Kuivalainen, Pekka, Prof.Microfabrication technologies originating from the semiconductor industry were applied to the instrumentation of analytical chemistry. Heated nebulizer (HN) chips made of silicon and glass were developed. The HN chips are used to vaporize a sample prior to detection by a mass spectrometer. The chips can be used with both liquid and gaseous samples and they are compatible with multiple atmospheric pressure ionization techniques, which enables wide applicability with different separation methods and various types of analytes. Better sensitivity, flexibility and operation with a lower sample and nebulizer gas flow rates was achieved by the miniaturization of the heated nebulizer. The chips can operate with 50 nL min-1 to 5 µL min-1 sample flow rates typical of microfluidic separation systems. Silicon and glass microfabrication methods - etching, wafer bonding and thin film technology - were developed and applied to the fabrication of the HN chips in 40 different layout and process variations. The thermal behaviour of the chips and the shape of the gaseous jet produced by the chips was studied. A method was developed for measuring the temperature distribution of a gaseous jet using a miniature thermocouple attached to a computer controlled xyz stage. Different methods for making capillary tube and electrical interconnections to the chips were also studied. Liquid chromatography (LC) column chips were developed resulting in an integrated chip having both an LC column and a heated nebulizer on a single chip. At the end of the LC column there is a high aspect ratio micropillar frit which enables packing the column with particles. The novel chips developed in this work extend the available ionization methods and the range of suitable analytes compared to the previously presented chips for mass spectrometry.