Browsing by Author "de Baar, M."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
- Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2022-04-01) Pedersen, Thomas Sunn; Abramovic, Ivana; Agostinetti, P.; Torres, M. Agredano; Aekaeslompolo, S.; Belloso, J. Alcuson; Aleynikov, P.; Aleynikova, K.; Alhashimi, M.; Ali, A.; Allen, N.; Alonso, A.; Anda, G.; Andreeva, T.; Angioni, C.; Arkhipov, A.; Arnold, A.; Asad, W.; Ascasibar, E.; Aumeunier, M-H; Avramidis, K.; Aymerich, E.; Baek, S-G; Baehner, J.; Baillod, A.; Balden, M.; Baldzuhn, J.; Ballinger, S.; Banduch, M.; Bannmann, S.; Navarro, A. Banon; Barbui, T.; Beidler, C.; Belafdil, C.; Bencze, A.; Benndorf, A.; Beurskens, M.; Biedermann, C.; Biletskyi, O.; Blackwell, B.; Blatzheim, M.; Bluhm, T.; Boeckenhoff, D.; Bongiovi, G.; Borchardt, M.; Borodin, D.; Boscary, J.; Bosch, H.; Bosmann, T.; Boeswirth, B.; Boettger, L.; Bottino, A.; Bozhenkov, S.; Brakel, R.; Brandt, C.; Braeuer, T.; Braune, H.; Brezinsek, S.; Brunner, K.; Buller, S.; Burhenn, R.; Bussiahn, R.; Buttenschoen, B.; Buzas, A.; Bykov, Yuri; Calvo, Ivan; Mata, K. Camacho; Caminal; Cannas, B.; Cappa, A.; Carls, A.; Carovani, F.; Carr, M.; Carralero, D.; Carvalho, B.; Casas, J.; Castano-Bardawil, D.; Castejon, F.; Chaudhary, N.; Chelis; Chomiczewska, A.; Coenen, J. W.; Cole, M.; Cordella, F.; Corre, Y.; Crombe, K.; Cseh, G.; Csillag, B.; Damm, H.; Day, C.; de Baar, M.; De la Cal, E.; Degenkolbe, S.; Demby, A.; Denk, S.; Dhard, C.; Di Siena, A.; Dinklage, A.; Dittmar, T.; Dreval, M.; Drevlak, M.; Drewelow, P.; Drews, P.; Dunai, D.; Edlund, E.; Effenberg, F.; Ehrke, G.; Endler, M.; Ennis, D. A.; Escoto, F. J.; Estrada, T.; Fable, E.; Fahrenkamp, N.; Fanni, A.; Faustin, J.; Fellinger, J.; Feng, Y.; Figacz, W.; Flom, E.; Ford, O.; Fornal, T.; Frerichs, H.; Freundt, S.; Fuchert, G.; Fukuyama, M.; Fullenbach, F.; Gantenbein, G.; Gao, Y.; Garcia, K.; Regana, J. M. Garcia; Garcia-Cortes; Gaspar, J.; Gates, D. A.; Geiger, J.; Geiger, B.; Giudicotti, L.; Gonzalez, A.; Goriaev, A.; Gradic, D.; Grahl, M.; Graves, J. P.; Green, J.; Grelier, E.; Greuner, H.; Gross, S.; Grote, H.; Groth, M.; Gruca, M.; Grulke, O.; Gruen, M.; Arnaiz, J. Guerrero; Guenter, S.; Haak; Haas, M.; Hacker, P.; Hakola, A.; Hallenbert, A.; Hammond, K.; Han, X.; Hansen, S. K.; Harris, J. H.; Hartfuss, H.; Hartmann, D.; Hathiramani, D.; Hatzky, R.; Hawke, J.; Hegedus, S.; Hein, B.; Heinemann, B.; Helander, P.; Henneberg, S.; Hergenhahn, U.; Hidalgo, C.; Hindenlang, F.; Hirsch, M.; Hoefel, U.; Hollfeld, K. P.; Holtz, A.; Hopf, D.; Hoeschen, D.; Houry, M.; Howard, J.; Huang, X.; Hubeny, M.; Hudson, S.; Ida, K.; Igitkhanov, Y.; Igochine, Valentin; Illy, S.; Ionita-Schrittwieser, C.; Isobe, M.; Jablonski, S.; Jagielski, B.; Jakubowski, M.; Jansen van Vuuren, Anton; Jelonnek, J.; Jenko, F.; Jensen, T.; Jenzsch, H.; Junghanns, P.; Kaczmarczyk, J.; Kallmeyer, J.; Kamionka, U.; Kandler, M.; Kasilov, S.; Kazakov, Y.; Kennedy, D.; Kharwandikar, A.; Khokhlov, M.; Kiefer, C.; Killer, C.; Kirschner, A.; Kleiber, R.; Klinger, T.; Klose, S.; Knauer, J.; Knieps, A.; Koechl, F.; Kocsis, G.; Kolesnichenko, Ya; Koenies, A.; Koenig, R.; Kontula, J.; Kornejew, P.; Koschinsky, J.; Kozulia, M. M.; Kraemer-Flecken, A.; Krampitz, R.; Krause, M.; Krawczyk, N.; Kremeyer, T.; Krier, L.; Kriete, D. M.; Krychowiak, M.; Ksiazek, I.; Kubkowska, M.; Kuczynski, M.; Kuehner, G.; Kumar, A.; Kurki-Suonio, T.; Kwak, S.; Landreman, M.; Lang, P. T.; Langenberg, A.; Laqua, H. P.; Laqua, H.; Laube, R.; Lazerson, S.; Lewerentz, M.; Li, C.; Liang, Y.; Linsmeier, Ch; Lion, J.; Litnovsky, A.; Liu, S.; Lobsien, J.; Loizu, J.; Lore, J.; Lorenz, A.; Losada, U.; Louche, F.; Lunsford, R.; Lutsenko, VN; Machielsen, M.; Mackel, F.; Maisano-Brown, J.; Maj, O.; Makowski, D.; Manduchi, G.; Maragkoudakis, E.; Marchuk, O.; Marsen, S.; Martines, E.; Martinez-Fernandez, J.; Marushchenko, M.; Masuzaki, S.; Maurer, D.; Mayer, M.; McCarthy, K. J.; Mccormack, O.; McNeely, P.; Meister, H.; Mendelevitch, B.; Mendes, S.; Merlo, A.; Messian, A.; Mielczarek, A.; Mishchenko, O.; Missal, B.; Mitteau, R.; Moiseenko, V. E.; Mollen, A.; Moncada, Victor; Moennich, T.; Morisaki, T.; Moseev, D.; Motojima, G.; Mulas, S.; Mulsow, M.; Nagel, M.; Naujoks, D.; Naulin, Volker; Neelis, T.; Neilson, H.; Neu, R.; Neubauer, O.; Neuner, U.; Nicolai, D.; Nielsen, S. K.; Niemann, H.; Nishiza, T.; Nishizawa, T.; Nuehrenberg, C.; Ochoukov, R.; Oelmann, J.; Offermanns, G.; Ogawa, K.; Okamura, S.; Oelmanns, J.; Ongena, J.; Oosterbeek, J.; Otte, M.; Pablant, N.; Panadero Alvarez, N.; Pandey, A.; Pasch, E.; Pavlichenko, R.; Pavone, A.; Pawelec, E.; Pechstein, G.; Pelka, G.; Perseo, Valeria; Peterson, B.; Pilopp, D.; Pingel, S.; Pisano, F.; Plockl, B.; Plunk, G.; Poloskei, P.; Pompe, B.; Popov, A.; Porkolab, M.; Proll, J.; Pueschel, M. J.; Puiatti, M-E; Sitjes, A. Puig; Purps, F.; Rahbarnia, K.; Rasmussen, J.; Reiman, A.; Reimold, F.; Reisner, M.; Reiter, D.; Richou, M.; Riedl, R.; Riemann, J.; Risse, K.; Roberg-Clark, G.; Rohde, Volker; Romazanov, J.; Rondeshagen, D.; Rong, P.; Rudischhauser, L.; Rummel, T.; Rummel, K.; Runov, A.; Rust, N.; Ryc, L.; Salembier, P.; Salewski, M.; Sanchez, E.; Satake, S.; Satheeswaran, G.; Schacht, J.; Scharff, E.; Schauer, F.; Schilling, J.; Schlisio, G.; Schmid, K.; Schmitt, J.; Schmitz, O.; Schneider, W.; Schneider, M.; Schneider, P.; Schrittwieser, R.; Schroeder, T.; Schroeder, M.; Schroeder, R.; Schweer, B.; Schwoerer, D.; Scott, E.; Shanahan, B.; Sias, G.; Sichta, P.; Singer, M.; Sinha, P.; Sipilä, S.; Slaby, C.; Sleczka, M.; Smith, H.; Smoniewski, J.; Sonnendrucker, E.; Spolaore, M.; Spring, A.; Stadler, R.; Stange, T.; Stepanov, A.Y.; Stephey, L.; Stober, J.; Stroth, U.; Strumberger, E.; Suzuki, C.; Suzuki, Y.; Svensson, J.; Szabolics, T.; Szepesi, T.; Szucs, M.; Tabares, F. L.; Tamura, N.; Tancetti, A.; Tantos, C.; Terry, J.; Thienpondt, H.; Thomsen, H.; Thumm, M.; Travere, J. M.; Traverso, P.; Tretter, J.; Trier, E.; Mora, H. Trimino; Tsujimura, T.; Turkin, Y.; Tykhyi, A.; Unterberg, B.; van Eeten, P.; van Milligen, B. Ph; van Schoor, M.; Vano, L.; Varoutis, S.; Vecsei, M.; Vela, L.; Velasco, J. L.; Vervier, M.; Vianello, N.; Viebke, H.; Vilbrandt, R.; Vogt, N.; Volkhausen, C.; von Stechow, A.; Wagner, F.; Wang, E.; Wang, H.; Warmer, F.; Wauters, T.; Wegener, L.; Wegner, T.; Weir, G.; Wenzel, U.; White, A.; Wilde, F.; Wilms, F.; Windisch, T.; Winkler, M.; Winter, A.; Winters, Victoria; Wolf, R.; Wright, A. M.; Wurden, G. A.; Xanthopoulos, P.; Xu, S.; Yamada, H.; Yamaguchi, H.; Yokoyama, M.; Yoshinuma, M.; Yu, Q.; Zamanov, M.; Zanini, M.; Zarnstorff, M.; Zhang, D.; Zhou, S.; Zhu, J.; Zhu, C.; Zilker, M.; Zocco, A.; Zohm, H.; Zoletnik, S.; Zsuga, L.; Vogel, G.We present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases. - Overview of ASDEX Upgrade results
A2 Katsausartikkeli tieteellisessä aikakauslehdessä(2017-10) Kallenbach, A.; Aguiam, D.; Aho-Mantila, L.; Angioni, C.; Arden, Nils; Parra, R. Arredondo; Asunta, O.; de Baar, M.; Balden, M.; Behler, K.; Bergmann, A.; Bernardo, J.; Bernert, M.; Beurskens, M.; Biancalani, A.; Bilato, R.; Birkenmeier, G.; Bobkov, V.; Bock, A.; Bogomolov, A.; Bolzonella, T.; Boswirth, B.; Bottereau, C.; Bottino, A.; van den Brand, H.; Brezinsek, S.; Brida, D.; Brochard, F.; Groth, M.; Hakola, A. H.; Karhunen, J.; Kim, D.; Kurki-Suonio, T.; Li, Li; Li, M.; Liu, Y. Q.; Miettunen, J.; Perez, I. Paradela; Salmi, A.; Santos, J.; Shao, Linming; Silva, C.; Simpson, J.; Snicker, A.; Wang, Nengchao; Wang, X.; Yang, Q.; Yang, Z.; Yu, Qingquan; Zhang, W.; , ASDEX Upgrade Team; , EUROfusion MST1 TeamThe ASDEX Upgrade (AUG) programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. Since 2015, AUG is equipped with a new pair of 3-strap ICRF antennas, which were designed for a reduction of tungsten release during ICRF operation. As predicted, a factor two reduction on the ICRF-induced W plasma content could be achieved by the reduction of the sheath voltage at the antenna limiters via the compensation of the image currents of the central and side straps in the antenna frame. There are two main operational scenario lines in AUG. Experiments with low collisionality, which comprise current drive, ELM mitigation/suppression and fast ion physics, are mainly done with freshly boronized walls to reduce the tungsten influx at these high edge temperature conditions. Full ELM suppression and non-inductive operation up to a plasma current of I-p = 0.8 MA could be obtained at low plasma density. Plasma exhaust is studied under conditions of high neutral divertor pressure and separatrix electron density, where a fresh boronization is not required. Substantial progress could be achieved for the understanding of the confinement degradation by strong D puffing and the improvement with nitrogen or carbon seeding. Inward/outward shifts of the electron density profile relative to the temperature profile effect the edge stability via the pressure profile changes and lead to improved/decreased pedestal performance. Seeding and D gas puffing are found to effect the core fueling via changes in a region of high density on the high field side (HFSHD). The integration of all above mentioned operational scenarios will be feasible and naturally obtained in a large device where the edge is more opaque for neutrals and higher plasma temperatures provide a lower collisionality. The combination of exhaust control with pellet fueling has been successfully demonstrated. High divertor enrichment values of nitrogen E-N >= 10 have been obtained during pellet injection, which is a prerequisite for the simultaneous achievement of good core plasma purity and high divertor radiation levels. Impurity accumulation observed in the all-metal AUG device caused by the strong neoclassical inward transport of tungsten in the pedestal is expected to be relieved by the higher neoclassical temperature screening in larger devices. - Overview of ASDEX Upgrade results
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2017-10) Aguiam, D.; Aho-Mantila, L.; Angioni, C.; Arden, N.; Parra, R. Arredondo; Asunta, O.; de Baar, M.; Balden, M.; Behler, K.; Bergmann, A.; Bernardo, J.; Bernert, M.; Beurskens, M.; Biancalani, A.; Bilato, R.; Birkenmeier, G.; Bobkov, V.; Bock, A.; Bogomolov, A.; Bolzonella, T.; Boeswirth, B.; Bottereau, C.; Bottino, A.; van den Brand, H.; Brezinsek, S.; Brida, D.; Brochard, F.; Bruhn, C.; Buchanan, J.; Buhler, A.; Burckhart, A.; Cambon-Silva, D.; Camenen, Y.; Carvalho, P.; Carrasco, G.; Cazzaniga, C.; Carr, M.; Carralero, D.; Casali, L.; Castaldo, C.; Cavedon, M.; Challis, C.; Chankin, A.; Chapman, I.; Clairet, F.; Classen, I.; Coda, S.; Coelho, R.; Coenen, J. W.; Colas, L.; Conway, G.; Costea, S.; Coster, D. P.; Croci, G.; Cseh, G.; Czarnecka, A.; D'Arcangelo, O.; Day, C.; Delogu, R.; de Marne, P.; Denk, S.; Denner, P.; Dibon, M.; D'Inca, R.; Di Siena, A.; Douai, D.; Drenik, A.; Drube, R.; Dunne, M.; Duval, B. P.; Dux, R.; Eich, T.; Elgeti, S.; Engelhardt, K.; Erdos, B.; Erofeev, I.; Esposito, B.; Fable, E.; Faitsch, M.; Fantz, U.; Faugel, H.; Felici, F.; Fietz, S.; Figueredo, A.; Fischer, R.; Ford, O.; Frassinetti, L.; Freethy, S.; Froeschle, M.; Fuchert, G.; Fuchs, J. C.; Fuenfgelder, H.; Galazka, K.; Galdon-Quiroga, J.; Gallo, A.; Gao, Y.; Garavaglia, S.; Garcia-Munoz, M.; Geiger, B.; Cianfarani, C.; Giannone, L.; Giovannozzi, E.; Gleason-Gonzalez, C.; Gloeggler, S.; Gobbin, M.; Goerler, T.; Goodman, T.; Gorini, G.; Gradic, D.; Graeter, A.; Granucci, G.; Greuner, H.; Griener, M.; Groth, M.; Gude, A.; Guenter, S.; Guimarais, L.; Haas, G.; Hakola, A. H.; Ham, C.; Happel, T.; Harrison, J.; Hatch, D.; Hauer, V.; Hayward, T.; Heinemann, B.; Heinzel, S.; Hellsten, T.; Henderson, S.; Hennequin, P.; Herrmann, A.; Heyn, E.; Hitzler, F.; Hobirk, J.; Hoelzl, M.; Hoeschen, T.; Holm, J. H.; Hopf, C.; Hoppe, F.; Horvath, L.; Houben, A.; Huber, A.; Igochine, V.; Ilkei, T.; Ivanova-Stanik, I.; Jacob, W.; Jacobsen, A. S.; Jacquot, J.; Janky, F.; Jardin, A.; Jaulmes, F.; Jenko, F.; Jensen, T.; Joffrin, E.; Kaesemann, C.; Kallenbach, A.; Kalvin, S.; Kantor, M.; Kappatou, A.; Kardaun, O.; Karhunen, J.; Kasilov, S.; Kernbichler, W.; Kim, D.; Kimmig, S.; Kirk, A.; Klingshirn, H. -J.; Koch, F.; Kocsis, G.; Koehn, A.; Kraus, M.; Krieger, K.; Krivska, A.; Kraemr-Flecken, A.; Kurki-Suonio, T.; Kurzan, B.; Lackner, K.; Laggner, F.; Lang, P. T.; Lauber, P.; Lazanyi, N.; Lazaros, A.; Lebschy, A.; Li, L.; Li, M.; Liang, Y.; Lipschultz, B.; Liu, Y.; Lohs, A.; Luhmann, N. C.; Lunt, T.; Lyssoivan, A.; Madsen, J.; Maier, H.; Maj, O.; Mailloux, J.; Maljaars, E.; Manas, P.; Mancini, A.; Manhard, A.; Manso, M. -E.; Mantica, P.; Mantsinen, M.; Manz, P.; Maraschek, M.; Martens, C.; Martin, P.; Marrelli, L.; Martitsch, A.; Mastrostefano, S.; Mayer, A.; Mayer, M.; Mazon, D.; McCarthy, P. J.; McDermott, R.; Meisl, G.; Meister, H.; Medvedeva, A.; Merkel, P.; Merkel, R.; Merle, A.; Mertens, V.; Meshcheriakov, D.; Meyer, H.; Meyer, O.; Miettunen, J.; Milanesio, D.; Mink, F.; Mlynek, A.; Monaco, F.; Moon, C.; Nazikian, R.; Nemes-Czopf, A.; Neu, G.; Neu, R.; Nielsen, A. H.; Nielsen, S. K.; Nikolaeva, V.; Nocente, M.; Noterdaeme, J. -M.; Nowak, S.; Oberkofler, M.; Oberparleiter, M.; Ochoukov, R.; Odstrcil, T.; Olsen, J.; Orain, F.; Palermo, F.; Papp, G.; Perez, I. Paradela; Pautasso, G.; Enzel, F.; Petersson, P.; Pinzon, J.; Piovesan, P.; Piron, C.; Plaum, B.; Ploeckl, B.; Plyusnin, V.; Pokol, G.; Poli, E.; Porte, L.; Potzel, S.; Prisiazhniuk, D.; Puetterich, T.; Ramisch, M.; Rapson, C.; Rasmussen, J.; Raupp, G.; Refy, D.; Reich, M.; Reimold, F.; Ribeiro, T.; Riedl, R.; Rittich, D.; Rocchi, G.; Rodriguez-Ramos, M.; Rohde, V.; Ross, A.; Rott, M.; Rubel, M.; Ryan, D.; Ryter, F.; Saarelma, S.; Salewski, M.; Salmi, A.; Sanchis-Sanchez, L.; Santos, G.; Santos, J.; Sauter, O.; Scarabosio, A.; Schall, G.; Schmid, K.; Schmitz, O.; Schneider, P. A.; Schneller, M.; Schrittwieser, R.; Schubert, M.; Schwarz-Selinger, T.; Schweinzer, J.; Scott, B.; Sehmer, T.; Sertoli, M.; Shabbir, A.; Shalpegin, A.; Shao, L.; Sharapov, S.; Siccinio, M.; Sieglin, B.; Sigalov, A.; Silva, A.; Silva, C.; Simon, P.; Simpson, J.; Snicker, A.; Sommariva, C.; Sozzi, C.; Spolaore, M.; Stejner, M.; Stober, J.; Stobbe, F.; Stroth, U.; Strumberger, E.; Suarez, G.; Sugiyama, K.; Sun, H. -J.; Suttrop, W.; Szepesi, T.; Tal, B.; Tala, T.; Tardini, G.; Tardocchi, M.; Terranova, D.; Tierens, W.; Told, D.; Tudisco, O.; Trevisan, G.; Treutterer, W.; Trier, E.; Tripsky, M.; Valisa, M.; Valovic, M.; Vanovac, B.; Varela, P.; Varoutis, S.; Verdoolaege, G.; Vezinet, D.; Vianello, N.; Vicente, J.; Vierle, T.; Viezzer, E.; von Toussaint, U.; Wagner, D.; Wang, N.; Wang, X.; Weidl, M.; Weiland, M.; White, A. E.; Willensdorfer, M.; Wiringer, B.; Wischmeier, M.; Wolf, R.; Wolfrum, E.; Xiang, L.; Yang, Q.; Yang, Z.; Yu, Q.; Zagorski, R.; Zammuto, I.; Zarzoso, D.; Zhang, W.; van Zeeland, M.; Zehetbauer, T.; Zilker, M.; Zoletnik, S.; Zohm, H.The ASDEX Upgrade (AUG) programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. Since 2015, AUG is equipped with a new pair of 3-strap ICRF antennas, which were designed for a reduction of tungsten release during ICRF operation. As predicted, a factor two reduction on the ICRF-induced W plasma content could be achieved by the reduction of the sheath voltage at the antenna limiters via the compensation of the image currents of the central and side straps in the antenna frame. There are two main operational scenario lines in AUG. Experiments with low collisionality, which comprise current drive, ELM mitigation/suppression and fast ion physics, are mainly done with freshly boronized walls to reduce the tungsten influx at these high edge temperature conditions. Full ELM suppression and non-inductive operation up to a plasma current of I-p = 0.8 MA could be obtained at low plasma density. Plasma exhaust is studied under conditions of high neutral divertor pressure and separatrix electron density, where a fresh boronization is not required. Substantial progress could be achieved for the understanding of the confinement degradation by strong D puffing and the improvement with nitrogen or carbon seeding. Inward/outward shifts of the electron density profile relative to the temperature profile effect the edge stability via the pressure profile changes and lead to improved/decreased pedestal performance. Seeding and D gas puffing are found to effect the core fueling via changes in a region of high density on the high field side (HFSHD). The integration of all above mentioned operational scenarios will be feasible and naturally obtained in a large device where the edge is more opaque for neutrals and higher plasma temperatures provide a lower collisionality. The combination of exhaust control with pellet fueling has been successfully demonstrated. High divertor enrichment values of nitrogen E-N >= 10 have been obtained during pellet injection, which is a prerequisite for the simultaneous achievement of good core plasma purity and high divertor radiation levels. Impurity accumulation observed in the all-metal AUG device caused by the strong neoclassical inward transport of tungsten in the pedestal is expected to be relieved by the higher neoclassical temperature screening in larger devices.