Browsing by Author "Ragagnin, A."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Euclid preparation. XXXIX. The effect of baryons on the halo mass function(EDP Sciences, 2024-05-01) Castro, T.; Borgani, S.; Costanzi, M.; Dakin, J.; Dolag, K.; Fumagalli, A.; Ragagnin, A.; Saro, A.; Le Brun, A. M.C.; Aghanim, N.; Amara, A.; Andreon, S.; Auricchio, N.; Baldi, M.; Bardelli, S.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carbone, C.; Carretero, J.; Casas, S.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.; Courtois, H. M.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Di Giorgio, A. M.; Dinis, J.; Dubath, F.; Duncan, C. A.J.; Dupac, X.; Farina, M.; Niemi, S. M.; Schneider, P.; Starck, J. L.; Wang, Y.; Gozaliasl, G.; Sánchez, A. G.; , Euclid Collaboration; Department of Computer Science; Osservatorio Astronomico di Trieste; University of Zurich; Ludwig Maximilian University of Munich; University of Trieste; Observatoire de Paris; Université Paris-Saclay; University of Portsmouth; Osservatorio Astronomico di Brera; Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna; Max Planck Institute for Extraterrestrial Physics; National Institute for Astrophysics (INAF); University of Genoa; University of Naples Federico II; Universidade do Porto; Istituto Nazionale di Astrofisica (INAF); Institute for High Energy Physics; RWTH Aachen University; Osservatorio Astronomico di Roma; Osservatorio Astronomico di Capodimonte; Universitá di Bologna; University of Edinburgh; University of Manchester; Urbanización Villafranca Del Castillo; Université Claude Bernard Lyon 1; Swiss Federal Institute of Technology Lausanne; Institut national de physique nucléaire et de physique des particules; University College London; University of Lisbon; University of Geneva; European Space Research and Technology Centre; University of Bonn; California Institute of TechnologyThe Euclid photometric survey of galaxy clusters stands as a powerful cosmological tool, with the capacity to significantly propel our understanding of the Universe. Despite being subdominant to dark matter and dark energy, the baryonic component of our Universe holds substantial influence over the structure and mass of galaxy clusters. This paper presents a novel model that can be used to precisely quantify the impact of baryons on the virial halo masses of galaxy clusters using the baryon fraction within a cluster as a proxy for their effect. Constructed on the premise of quasi-adiabaticity, the model includes two parameters, which are calibrated using non-radiative cosmological hydrodynamical simulations, and a single large-scale simulation from the Magneticum set, which includes the physical processes driving galaxy formation. As a main result of our analysis, we demonstrate that this model delivers a remarkable 1% relative accuracy in determining the virial dark matter-only equivalent mass of galaxy clusters starting from the corresponding total cluster mass and baryon fraction measured in hydrodynamical simulations. Furthermore, we demonstrate that this result is robust against changes in cosmological parameters and against variation of the numerical implementation of the subresolution physical processes included in the simulations. Our work substantiates previous claims regarding the impact of baryons on cluster cosmology studies. In particular, we show how neglecting these effects would lead to biased cosmological constraints for a Euclid-like cluster abundance analysis. Importantly, we demonstrate that uncertainties associated with our model arising from baryonic corrections to cluster masses are subdominant when compared to the precision with which mass-observable (i.e. richness) relations will be calibrated using Euclid and to our current understanding of the baryon fraction within galaxy clusters.