Browsing by Author "Puurunen, Riikka, Prof., Aalto University, Department of Chemical and Metallurgical Engineering, Finland"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Carbon Catalysts in Biofuel Production: from Furfural to 2-Methylfuran(Aalto University, 2019) Jaatinen, Salla; Karinen, Reetta, Dr., Aalto University, Department of Chemical and Metallurgical Engineering, Finland; Lehtonen, Juha, Prof., VTT Technical Research Centre of Finland, Finland; Kemian tekniikan ja metallurgian laitos; Department of Chemical and Metallurgical Engineering; Catalysis Research Group; Kemian tekniikan korkeakoulu; School of Chemical Technology; Puurunen, Riikka, Prof., Aalto University, Department of Chemical and Metallurgical Engineering, FinlandProduction of bio-based chemicals, fuels and energy are essential in the current climate environment. Hydrotreatment of renewable platform chemical furfural yields many valuable products, such as furfuryl alcohol and 2-methylfuran (MF). MF has excellent properties for use as a gasoline octane booster to replace current fossil methyl tert-butyl ether and ethyl tert-butyl ether. The current CuCr-catalyst in furfural hydrotreatment is toxic and new and selective catalysts are required. In this dissertation, noble metal free and non-toxic catalysts were prepared for production of MF. Metal catalyst options chosen for this work were copper, nickel and iron. High yields (up to 60%) of MF were achieved with the prepared catalysts in liquid phase batch reactor experiments in short reaction time (1 - 2 h). High temperature (230 °C) and high hydrogen partial pressure (40 bar) were optimal for MF produc-tion, and the most optimal metal combinations were copper-nickel and copper-iron. Active metals were tested in MF production on various activated carbon supports and a mesoporous carbon material (CMK-3). Deep characterization was performed to obtain data of beneficial catalyst characteristics for MF production. Production of MF was enhanced by small metal particle size, small pore volume and higher acidity. These enhancements suppressed the production of competitive products and side reactions, and increased the selectivity towards 2-methylfuran. Solvents may also react in furfural hydrotreatment. The applied 2-propanol can react through catalytic transfer hydrogenation (CTH) offering hydrogen for hydrotreatment reactions and producing acetone. The solvent can also dehydrogenate to acetone and hydrogen. Acetone formation mechanisms were studied with the prepared catalysts. The acetone formation was metal dependent: with nickel and copper acetone formation occurred through CTH while with iron also dehydrogenation took place. Hydrogen solubility in the reaction media is important for the process and especially in scaling up pro-cesses. Hydrogen solubilities in furfural and 2-propanol were measured and observed to increase as a function of temperature (50 - 200 °C) and pressure (50 - 125 bar). Hydrogen solubility in 2-propanol was observed almost three times higher to solubility in furfural. By way of example, at 200 °C and 125 bar hydrogen mole fraction in 2-propanol and furfural was measured to be 0.064 and 0.038 respectively. The solubility data was modelled with PC-SAFT model and the model predicted the hydrogen solubility data well. This dissertation offers a MF selectivity optimized and fast noble metal free catalyst alternative for the current catalyst, new data of hydrogen solubility in the reaction media and optimized carbon support characteristics for the production of MF.Item Tar reforming in biomass gasification gas cleaning(Aalto University, 2017) Kaisalo, Noora; Simell, Pekka, Dr., VTT Technical Research Centre of Finland Ltd, Finland; Lehtonen, Juha, Research Prof., VTT Technical Research Centre of Finland Ltd, Finland; Kemian tekniikan ja metallurgian laitos; Department of Chemical and Metallurgical Engineering; Industrial Chemistry; Kemian tekniikan korkeakoulu; School of Chemical Technology; Puurunen, Riikka, Prof., Aalto University, Department of Chemical and Metallurgical Engineering, FinlandThermochemical conversion of biomass can be used to produce synthesis gas via gasification. This synthesis gas can be further upgraded to renewable fuels and chemicals provided that the gas is ultra clean. To achieve this, impurities, such as light hydrocarbons and tar compounds present in the gasification gas can be converted to syngas by reforming. The amount of tar in gasification gas can be reduced already in the gasifier by using catalytically active bed materials. Typical bed materials in fluidized bed gasification are sand, olivine, dolomite and MgO. The tar conversion activity of dolomite and MgO were found to be high at atmospheric pressure. However, the activity was lost when the pressure was increased to 10 bar. Gasification gas contains, in addition to tar, ethene, which may contribute to further tar formation in high temperature zones of the process, especially at elevated pressures. Ethene forms tar compounds by radical chain reactions. The tar formed by thermal reactions of ethene resembles the tar from high temperature fluidized bed gasification, which contains mainly secondary and tertiary tar compounds. Carbon formation on the reformer catalysts presents a challenge in biomass gasification gas cleaning. The presence of sulfur in the gas, mainly in the form of H2S, also complicates reforming. Typical catalysts used in the reformer after the gasifier are precious metal and nickel catalysts. The heat for reforming can be brought either indirectly in the case of steam reforming or by adding oxygen to the feed for autothermal reforming. Nickel and precious metal catalyst activities were analysed in experiments of around 500 hours with several different gas compositions. Catalyst deactivation was higher with steam than autothermal reforming. The use of catalytically active bed materials to reduce tar concentration already in the gasifier is especially favourable for steam reforming as the catalyst deactivation rate was decreased by the lower hydrocarbon content of the gas. Benzene, a highly stable compound, is a typical residual compound in the gas after the reformer. Thus, the reformer could be designed based on the reforming kinetics of benzene, for example in the production of synthetic natural gas. For this purpose, qualitative analysis of the effect of the main gasification gas compounds (H2, CO, CO2, H2O) on reforming kinetics were studied with a nickel catalyst. Benzene reforming can be described by first order kinetics if the parameters are estimated for the specific gas composition.