Aaltodoc - homepage
Communities & Collections
Browse Aaltodoc publication archive
EN | FI |
Log In
  1. Home
  2. Browse by Author

Browsing by Author "Nurminen, Jukka K., Prof., University of Helsinki, Finland"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Adaptive OSS: Principles and Design of an Adaptive OSS for 5G Networks
    (2024) Mfula, Harrison
    School of Science | Doctoral dissertation (article-based)
    In recent years, the rise and continued popularity of connected applications has resulted in explosive growth in the demand for wireless broadband services of high speed, massive capacity, and ultra-low latency, such as video-on-demand services, Internet of Things, and mission critical applications. 5G technology is designed to provide the required connectivity in these applications. As a consequence of its continued success, seamless connectivity has become synonymous to a human right. Suffice to say, at the moment, due to the vast potential benefits of 5G technology, there is a kind of gold rush driving rapid worldwide deployments of 5G networks that has led to a significant gap in investment, research, and development of suitable operation support system (OSS) solutions for daily operation, monitoring and control of 5G networks. Furthermore, as the number of 5G deployments continue to rise, high data traffic volumes and stakeholder expectation of seamless connectivity from anything to anything has become the norm. In this regard, the need for suitable OSS solutions has become critical. This dissertation fills the identified gap in the following way, first, we design a scalable architecture that enables batch and stream processing of high throughput, high volume, and ultra-low-latency data driven OSS solutions to effectively support existing and 5G OSS use cases. Building on the resulting architecture, we extend existing, and in some cases develop new SON algorithms to meet 5G requirements. Particularly, we develop adaptive algorithms which focus on self-configuration, self-optimization, self-healing, and SON-coordination use cases. Furthermore, we introduce solutions for transitioning from the current mainly proprietary OSS hardware to vendor agnostic cloud-native dynamic infrastructure. Lastly, we make digitization of OSS operations more efficient. Specifically, we develop an artificial intelligence based solution (AIOps) for conducting OSS operations efficiently at cloud scale. Using the findings and proposed solutions in this dissertation, vendors, and service providers can design and implement suitable solutions that meet stringent business and technical requirements of applications running on top of 5G networks and beyond.
  • Loading...
    Thumbnail Image
    Mobile systems for adaptive road safety and time-relevant modal shift
    (2020) Bagheri, Majdabadi Mehrdad
    School of Science | Doctoral dissertation (article-based)
    Mobile networks have brought the opportunity of using smartphone data to investigate the challenges of road safety and travel mode choice for sustainable urban mobility. This thesis adopts the mobile cloud computing (MCC) approach and uses smartphone data to address these two challenges. Road safety influences the mode choice between private cars and low-carbon transportation that usually involves walking and cycling. In this regard, pedestrian collision avoidance is crucial for both conventional and autonomous vehicles. As dedicated 802.11p-based device-to-device communication is not readily available on smartphones, collision warning systems could use a designated mobile app for indirect vehicle-to-pedestrian (V2P) communication and centrally perform the collision prediction on cloud servers. Vehicular safety applications require high-frequency beaconing to achieve adequate locational and temporal precisions. In these situations, the power consumption of beaconing can create a bottleneck due to the limited capacity of smartphone batteries. In addition, cellular network capacity and cloud computation resources could be limiting factors that require their own city-scale assessments. To address these issues, this thesis investigates the practicality of smartphone-based V2P collision warning systems by means of model and prototype evaluations. We need to analyze extent and variations of battery consumption under different traffic conditions, assuming a situation-adaptive rate control is used for communication. We also need to examine the network and computation load of the system and compare them against the capacity and cost of available infrastructures. Regarding mode choices, a modal shift from cars to lower-carbon alternatives results in changes in travel-times, emissions, and physically-active distances. An increased travel-time can be a barrier against the realization of modal shifts, due to limited daily time-budgets of people. Despite significant development in data collection technologies, there is a limited focus on the decision-support perspective and developing useful computational frameworks for a time-relevant modal shift analysis. This thesis aims at developing a prototype of an MCC-based framework that uses smartphone data to show the extent of potential changes with modal shifts while taking into account travel-time changes. Such a framework would involve extracting observed door-to-door trips from smartphone data, computing realistic low-carbon alternatives to compare with those observed trips, and finally estimating the potential changes. Moreover, due to the nature of urban travel patterns, any proposed method should be evaluated in realistic scenarios and consider spatiotemporal variations. This thesis seeks to acquire realistic trace data of target urban regions and use it to evaluate the proposed frameworks. While the numerical outcomes could differ between cities, such experimental evaluations should demonstrate the overall practicality and usefulness of the methods.
Help | Open Access publishing | Instructions to convert a file to PDF/A | Errata instructions | Send Feedback
Aalto UniversityPrivacy notice | Cookie settings | Accessibility Statement | Aalto University Learning Centre