Browsing by Author "Numminen, Elina"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
- Strain diversity and spatial distribution are linked to epidemic dynamics in host populations*
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2022-01) Eck, Jenalle L.; Barrès, Benoit; Soubeyrand, Samuel; Sirén, Jukka; Numminen, Elina; Laine, Anna LiisaThe inherently variable nature of epidemics renders predictions of when and where infection is expected to occur challenging. Differences in pathogen strain composition, diversity, fitness, and spatial distribution are generally ignored in epidemiological modeling and are rarely studied in natural populations, yet they may be important drivers of epidemic trajectories. To examine how these factors are linked to epidemics in natural host populations, we collected epidemiological and genetic data from 15 populations of the powdery mildew fungus, Podosphaera plantaginis, on Plantago lanceolata in the Åland Islands, Finland. In each population, we tracked spatiotemporal disease progression throughout one epidemic season and coupled our survey of infection with intensive field sampling of the pathogen. We found that strain composition varied greatly among populations in the landscape. Within populations, strain composition was driven by the sequence of strain activity: early-active strains reached higher abundances, leading to consistent strain compositions over time. Co-occurring strains also varied in their contribution to the growth of the local epidemic, and these fitness inequalities were linked to epidemic dynamics: a higher proportion of hosts became infected in populations containing strains that were more similar in fitness. Epidemic trajectories in the populations were also linked to strain diversity and spatial dynamics: higher infec- tion rates occurred in populations containing higher strain diversity, while spatially clustered epidemics experienced lower infection rates. Together, our results suggest that spatial and/or temporal variation in the strain composition, diversity, and fitness of pathogen populations are important factors generating variation in epidemiological trajectories among infected host populations. - Variable opportunities for outcrossing result in hotspots of novel genetic variation in a pathogen metapopulation
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2019-06-01) Laine, Anna Liisa; Barrès, Benoit; Numminen, Elina; Sirén, Jukka P.Many pathogens possess the capacity for sex through outcrossing, despite being able to reproduce also asexually and/or via selfing. Given that sex is assumed to come at a cost, these mixed reproductive strategies typical of pathogens have remained puzzling. While the ecological and evolutionary benefits of outcrossing are theoretically well-supported, support for such benefits in pathogen populations are still scarce. Here, we analyze the epidemiology and genetic structure of natural populations of an obligate fungal pathogen, Podosphaera plantaginis. We find that the opportunities for outcrossing vary spatially. Populations supporting high levels of coinfection –a prerequisite of sex – result in hotspots of novel genetic diversity. Pathogen populations supporting coinfection also have a higher probability of surviving winter. Jointly our results show that outcrossing has direct epidemiological consequences as well as a major impact on pathogen population genetic diversity, thereby providing evidence of ecological and evolutionary benefits of outcrossing in pathogens. - Variable opportunities for outcrossing result in hotspots of novel genetic variation in a pathogen metapopulation
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2019-06-18) Laine, Anna-Liisa; Barres, Benoit; Numminen, Elina; Siren, Jukka P.Many pathogens possess the capacity for sex through outcrossing, despite being able to reproduce also asexually and/or via selfing. Given that sex is assumed to come at a cost, these mixed reproductive strategies typical of pathogens have remained puzzling. While the ecological and evolutionary benefits of outcrossing are theoretically well-supported, support for such benefits in pathogen populations are still scarce. Here, we analyze the epidemiology and genetic structure of natural populations of an obligate fungal pathogen, Podosphaera plantaginis. We find that the opportunities for outcrossing vary spatially. Populations supporting high levels of coinfection -a prerequisite of sex - result in hotspots of novel genetic diversity. Pathogen populations supporting coinfection also have a higher probability of surviving winter. Jointly our results show that outcrossing has direct epidemiological consequences as well as a major impact on pathogen population genetic diversity, thereby providing evidence of ecological and evolutionary benefits of outcrossing in pathogens.