Browsing by Author "Nikunen, P."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
- Density Profile Evolution and Nonequilibrium Effects in Partial and Full Spreading Measurements of Surface Diffusion
School of Science | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2001) Nikunen, P.; Vattulainen, Ilpo; Ala-Nissilä, TapioWe study the nature of nonequilibrium effects in the collective diffusion coefficient DC(θ) vs the coverage θ as extracted from Boltzmann–Matano analysis of spreading coverage profiles. We focus on the temporal behavior of the profiles and study how the corresponding nonequilibrium effects in DC(θ) depend on the initial density gradient and the initial state from which the spreading starts. To this end, we carry out extensive Monte Carlo simulations for a lattice-gas model of the O/W(110) system. Studies of submonolayer spreading from an initially ordered p(2×1) phase at θ=12 reveal that the spreading and diffusion rates in directions parallel and perpendicular to rows of oxygen atoms are significantly different within the ordered phase. Aside from this effect, we find that the degree of ordering in the initial phase has a relatively small impact on the overall behavior of DC(θ). Also, although we find that nonequilibrium effects are clearly present in submonolayer spreading profiles, DC(θ) determined from such data approaches its asymptotic equilibrium behavior much more rapidly than in the case of full spreading. Nevertheless, in both cases there are noticeable deviations from equilibrium results that persist even at very long times and are strongest in ordered phases and in the vicinity of phase boundaries. These conclusions are confirmed by complementary studies of the temporal behavior of the order parameter φ(θ). Finally, we use DC(θ) and φ(θ) to determine the locations of phase boundaries and find such data to be clearly time dependent during full spreading. We conclude that nonequilibrium effects seem to be an inherent feature in profile evolution studies of surface diffusion in all cases where ordering plays a prominent role. This warrants particular care to be taken with profile spreading experiments. - Effects of quenched impurities on surface diffusion, spreading and ordering of O/W(110)
School of Science | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2002) Nikunen, P.; Vattulainen, Ilpo; Ala-Nissilä, TapioWe study how quenched impurities affect the surfacediffusion and ordering of strongly interactingadsorbate atoms on surfaces. To this end, we carry out Monte Carlo simulations for a lattice-gas model of O/W(110), including small concentrations of immobile impurities which block their adsorption sites. We examine the behavior of the diffusion coefficients and order parameters as a function of coverage corresponding to various ordered phases at low temperatures. The effects of impurities are examined under both equilibrium and nonequilibrium conditions, and the results are compared to recent studies on a completely clean surface. We find that even minute impurity concentrations affect the diffusion behavior considerably in equilibrium. The effects are strongest in ordered phases and close to phase boundaries, where quenched impurities lead to a reduction of order, which in turn leads to significant changes in the collective diffusion and phase behavior. As the impurity concentration is increased to a level of a few percent of the total surface area, the reduction in order becomes particularly prominent at high coverages. Further studies under nonequilibrium conditions reveal that nonequilibrium effects are strong in the absence of impurities, while for surfaces covered by impurities the nonequilibrium effects are relatively weaker.