Browsing by Author "Mohanty, Sunil"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Evaluation of Serverless Computing Frameworks Based on Kubernetes(2018-08-20) Mohanty, Sunil; Premsankar, Gopika; Perustieteiden korkeakoulu; Di Francesco, MarioRecent advancements in virtualization and software architectures have led to the birth of the new paradigm of serverless computing. Serverless computing, also known as function-as-a-service, allows developers to deploy functions as computing units without worrying about the underlying infrastructure. Moreover, no resources are allocated or billed until a function is invoked. Thus, the major benefits of serverless computing are reduced developer concern about infrastructure, reduced time to market and lower cost. Currently, serverless computing is generally available through various public cloud service providers. However, there are certain bottlenecks on public cloud platforms, such as vendor lock-in, computation restrictions and regulatory restrictions. Thus, there is a growing interest to implement serverless computing on a private infrastructure. One of the preferred ways of implementing serverless computing is through the use of containers. A container-based solution allows to utilize features of existing orchestration frameworks, such as Kubernetes. This thesis discusses the implementation of serverless computing on Kubernetes. To this end, we carry out a feature evaluation of four open source serverless computing frameworks, namely Kubeless, OpenFaaS, Fission and OpenWhisk. Based on predefined criteria, we select Kubeless, Fission and OpenFaaS for further evaluation. First, we describe the developer experience on each framework. Next, we compare three different modes in which OpenFaaS functions are executed: HTTP, serializing and streaming. We evaluate the response time of function invocation and ease of monitoring and management of logs. We find that HTTP mode is the preferred mode for OpenFaaS. Finally, we evaluate the performance of the considered frameworks under different workloads. We find that Kubeless has the best performance among the three frameworks, both in terms of response time and the ratio of successful responses.