Browsing by Author "Mattos, Bruno D."
Now showing 1 - 20 of 23
- Results Per Page
- Sort Options
- Accounting for Substrate Interactions in the Measurement of the Dimensions of Cellulose Nanofibrils
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2019-07) Mattos, Bruno D.; Tardy, Blaise L.; Rojas, Orlando J.Mechanically fibrillated cellulose nanofibrils (CNFs) have attracted special attention as building blocks for the development of advanced materials and composites. A correlation exists between CNF morphology and the properties of the materials they form. However, this correlation is often evaluated indirectly by process-centered approaches or by accessing a single dimensionality of CNFs adsorbed on solid supports. High-resolution imaging is currently the best approach to describe the morphological features of nanocelluloses; nevertheless, adsorption effects need to be accounted for. For instance, possible deformations of the CNFs arising from capillary forces and interactions with the substrate need to be considered in the determination of their cross-sectional dimensions. By considering soft matter imaging and adsorption effects, we provide evidence of the deformation of CNFs upon casting and drying. We determine a substantial flattening associated with the affinity of CNFs with the substrate corresponding to a highly anisotropic cross-sectional geometry (ellipsoidal) in the dried state. Negative-contrast scanning electron microscopy is also introduced as a new method to assess the dimensions of the CNFs. The images obtained by the latter, a faster imaging method, were correlated with those from atomic force microscopy. The cross-sectional area of the CNF is reconstructed by cross-correlating the widths and heights obtained by the two techniques. - Controlled biocide release from hierarchically-structured biogenic silica: surface chemistry to tune release rate and responsiveness
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2018-12-01) Mattos, Bruno D.; Tardy, Blaise L.; Mohammadi, Pezhman; Kämäräinen, Tero; Linder, Markus; Schreiner, Wido H.; Magalhães, Washington L.E.; Rojas, Orlando J.Biocides are essential for crop protection, packaging and several other biosystem applications. Therein, properties such as tailored and controlled release are paramount in the development of sustainable biocide delivery systems. We explore the self-similar nano-organized architecture of biogenic silica particles to achieve high biocide payload. The high surface area accessibility of the carrier allowed us to develop an efficient, low energy loading strategy, reaching significant dynamic loadings of up to 100 mg·g-1. The release rate and responsiveness were tuned by manipulating the interfaces, using either the native hydroxyl surfaces of the carrier or systems modified with amines or carboxylic acids in high density. We thoroughly evaluated the impact of the carrier-biocide interactions on the release rate as a function of pH, ionic strength and temperature. The amine and carboxyl functionalization strategy led to three-fold decrease in the release rate, while higher responsiveness against important agro-industrial variables. Key to our discoveries, nanostructuring thymol in the biogenic silica endowed systems with controlled, responsive release promoting remarkable, high and localized biocidal activity. The interfacial factors affecting related delivery were elucidated for an increased and localized biocidal activity, bringing a new light for the development of controlled release systems from porous materials. - Endoglucanase effects on energy consumption in the mechanical fibrillation of cellulose fibers into nanocelluloses
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2023-07-15) Berto, Gabriela L.; Mattos, Bruno D.; Velasco, Josman; Zhao, Bin; Segato, Fernando; Rojas, Orlando J.; Arantes, ValdeirEnzymatic processing is considered a promising approach for advancing environmentally friendly industrial processes, such as the use of endoglucanase (EG) enzyme in the production of nanocellulose. However, there is ongoing debate regarding the specific properties that make EG pretreatment effective in isolating fibrillated cellulose. To address this issue, we investigated EGs from four glycosyl hydrolase (GH) families (5, 6, 7, and 12) and examined the roles of the three-dimensional structure and catalytic features, with a focus on the presence of a carbohydrate binding module (CBM). Using eucalyptus Kraft wood fibers, we produced cellulose nanofibrils (CNFs) through mild enzymatic pretreatment, followed by disc ultra-refining. Comparing the results with the control (without pretreatment), we observed that GH5 and GH12 enzymes (without CBM) reduced fibrillation energy by approximately 15 %. The most significant energy reduction, 25 and 32 %, was achieved with GH5 and GH6 linked to CBM, respectively. Notably, these CBM-linked EGs improved the rheological properties of CNF suspensions without releasing soluble products. In contrast, GH7-CBM exhibited significant hydrolytic activity, resulting in the release of soluble products, but did not contribute to a reduction in fibrillation energy. This discrepancy can be attributed to the large molecular weight and wide cleft of GH7-CBM, which led to the release of soluble sugars but had little impact on fibrillation. Our findings suggest that the improved fibrillation observed with EG pretreatment is primarily driven by efficient enzyme adsorption on the substrate and modification of the surface viscoelasticity (amorphogenesis), rather than hydrolytic activity or release of products. - Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture
A2 Katsausartikkeli tieteellisessä aikakauslehdessä(2021-04) Grillo, Renato; Mattos, Bruno D.; Antunes, Debora R.; Forini, Mariana M.L.; Monikh, Fazel A.; Rojas, Orlando J.The constantly increasing global food demand galvanizes innovative agricultural actions aimed to transcend current production levels. The predicted near-future food security scenario is alarming, requiring actions beyond traditional agricultural practices. Following the success of nanotechnologies in pharma and health sciences, nano-enabled agriculture is expected to increase crop yields and limit losses to pathogens, pests and other threats. Associated efforts are enabled by real-time sensing and controlled delivery, the latter of which considers cargos designed for controlled and targeted release, especially if triggered on demand. In this review, we introduce recent breakthroughs in these areas, including pesticide delivery as well as genetic modification and the engineering of nanoparticles for application in living materials. We offer a critical discussion on the physico-chemistry of adhesion of nanoparticles to vegetal tissue, their uptake and translocation in and within plants. - The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agri-Food Residues
A2 Katsausartikkeli tieteellisessä aikakauslehdessä(2021-10-28) Otoni, Caio G.; Azeredo, Henriette M.C.; Mattos, Bruno D.; Beaumont, Marco; Correa, Daniel S.; Rojas, Orlando J.The most recent strategies available for upcycling agri-food losses and waste (FLW) into functional bioplastics and advanced materials are reviewed and the valorization of food residuals are put in perspective, adding to the water–food–energy nexus. Low value or underutilized biomass, biocolloids, water-soluble biopolymers, polymerizable monomers, and nutrients are introduced as feasible building blocks for biotechnological conversion into bioplastics. The latter are demonstrated for their incorporation in multifunctional packaging, biomedical devices, sensors, actuators, and energy conversion and storage devices, contributing to the valorization efforts within the future circular bioeconomy. Strategies are introduced to effectively synthesize, deconstruct and reassemble or engineer FLW-derived monomeric, polymeric, and colloidal building blocks. Multifunctional bioplastics are introduced considering the structural, chemical, physical as well as the accessibility of FLW precursors. Processing techniques are analyzed within the fields of polymer chemistry and physics. The prospects of FLW streams and biomass surplus, considering their availability, interactions with water and thermal stability, are critically discussed in a near-future scenario that is expected to lead to next-generation bioplastics and advanced materials. - Green Formation of Robust Supraparticles for Cargo Protection and Hazards Control in Natural Environments
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2018-07-19) Mattos, Bruno D.; Greca, Luiz G.; Tardy, Blaise L.; Magalhães, Washington L.E.; Rojas, Orlando J.In parallel with important technological advances, nanoparticles have brought numerous environmental and toxicological challenges due to their high mobility and nonspecific surface activity. The hazards associated with nanoparticles can be significantly reduced while simultaneously keeping their inherent benefits by superstructuring. In this study, a low-temperature and versatile methodology is employed to structure nanoparticles into controlled morphologies from biogenic silica, used as a main building block, together with cellulose nanofibrils, which promote cohesion. The resultant superstructures are evaluated for cargo loading/unloading of a model, green biomolecule (thymol), and for photo-accessibility and mobility in soil. The bio-based superstructures resist extremely high mechanical loading without catastrophic failure, even after severe chemical and heat treatments. Additionally, the process allows pre and in situ loading, and reutilization, achieving remarkable dynamic payloads as high as 90 mg g−1. The proposed new and facile methodology is expected to offer a wide range of opportunities for the application of superstructures in sensitive and natural environments. - Guiding Bacterial Activity for Biofabrication of Complex Materials via Controlled Wetting of Superhydrophobic Surfaces
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2020-10-27) Greca, Luiz G.; Rafiee, Mahdi; Karakoç, Alp; Lehtonen, Janika; Mattos, Bruno D.; Tardy, Blaise L.; Rojas, Orlando J.Superhydrophobic surfaces are promising for preventing fouling and the formation of biofilms, with important implications in the food chain, maritime transport, and health sciences, among others. In this work, we exploit the interplay between wetting principles of superhydrophobic surfaces and microbial fouling for advanced three-dimensional (3D) biofabrication of biofilms. We utilize hydrostatic and capillary pressures to finely control the air-water interface and the aerotaxis-driven biofabrication on superhydrophobic surfaces. Superhydrophobic 3D molds are produced by a simple surface modification that partially embeds hydrophobic particles in silicone rubber. Thereafter, the molds allow the templating of the air-water interface of the culture medium, where the aerobic nanocellulose-producing bacteria (Komagataeibacter medellinensis) are incubated. The biofabricated replicas are hollow and seamless nanofibrous objects with a controlled morphology. Gradients of thickness, topographical feature size, and fiber orientation on the biofilm are obtained by controlling wetting, incubation time, and nutrient availability. Furthermore, we demonstrate that capillary length limitations are overcome by using pressurized closed molds, whereby a persistent air plastron allows the formation of 3D microstructures, regardless of their morphological complexity. We also demonstrate that interfacial biofabrication is maintained for at least 12 days without observable fouling of the mold surface. In summary, we achieve controlled biofouling of the air-water interface as imposed by the experimental framework under controlled wetting. The latter is central to both microorganism-based biofabrication and fouling, which are major factors connecting nanoscience, synthetic biology, and microbiology. - Lignin Nanoparticle Nucleation and Growth on Cellulose and Chitin Nanofibers
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2021-02-08) Pasquier, Eva; Mattos, Bruno D.; Belgacem, Naceur; Bras, Julien; Rojas, Orlando J.Cellulose (CNF) and chitin (ChNF) nanofibers are known to form materials that are both tough and strong. In this study, we hypothesize that the inertness of networks produced from CNF and ChNF makes them ideal templates for heterogeneous reactions and in situ formation of nanoarchitectures. We expand nanoparticle templating on polysaccharide colloids by introducing a new and facile process that leads to the growth of organic nanoparticles on CNF and ChNF in aqueous media. The process, based on solvent shifting supported on solid interfaces, is demonstrated by direct observation of lignin nanoparticles that are further used for their photocatalytic activity. Importantly, the dynamics of nanoparticle nucleation and growth is correlated with the surface chemistry of the templating nanopolysaccharides. Electrostatic repulsion between the deprotonated lignin molecules and the slightly negative CNF support led to limited adsorption and was effective in producing free (nonbound) lignin nanoparticles (28 ± 7 nm) via precipitation. In contrast, the stronger interfacial interactions between the positively charged ChNF and lignin molecules facilitated instantaneous and extensive lignin adsorption, followed by nucleation and growth into relatively larger nanoparticles (46 ± 17 nm). The latter were homogeneously distributed and strongly coupled to the ChNF support. Overall, we introduce lignin nanoparticle nucleation and growth on renewable nanopolysaccharides, offering an effective route toward in situ synthesis of highly functional fibrils and related cohesive films that offer a great potential in packaging and other applications. - Lignin-Based Porous Supraparticles for Carbon Capture
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2021-04-27) Zhao, Bin; Borghei, Maryam; Zou, Tao; Wang, Ling; Johansson, Leena-Sisko; Majoinen, Johanna; Sipponen, Mika H.; Österberg, Monika; Mattos, Bruno D.; Rojas, Orlando J.Multiscale carbon supraparticles (SPs) are synthesized by soft-templating lignin nano- and microbeads bound with cellulose nanofibrils (CNFs). The interparticle connectivity and nanoscale network in the SPs are studied after oxidative thermostabilization of the lignin/CNF constructs. The carbon SPs are formed by controlled sintering during carbonization and develop high mechanical strength (58 N·mm-3) and surface area (1152 m2·g-1). Given their features, the carbon SPs offer hierarchical access to adsorption sites that are well suited for CO2 capture (77 mg CO2·g-1), while presenting a relatively low pressure drop (∼33 kPa·m-1 calculated for a packed fixed-bed column). The introduced lignin-derived SPs address the limitations associated with mass transport (diffusion of adsorbates within channels) and kinetics of systems that are otherwise based on nanoparticles. Moreover, the carbon SPs do not require doping with heteroatoms (as tested for N) for effective CO2 uptake (at 1 bar CO2 and 40 °C) and are suitable for regeneration, following multiple adsorption/desorption cycles. Overall, we demonstrate porous SP carbon systems of low cost (precursor, fabrication, and processing) and superior activity (gas sorption and capture). - Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2022-07-06) Pasquier, Eva; Mattos, Bruno D.; Koivula, Hanna; Khakalo, Alexey; Belgacem, Mohamed Naceur; Rojas, Orlando J.; Bras, JulienNatural biopolymers have become key players in the preparation of biodegradable food packaging. However, biopolymers are typically highly hydrophilic, which imposes limitations in terms of barrier properties that are associated with water interactions. Here, we enhance the barrier properties of biobased packaging using multilayer designs, in which each layer displays a complementary barrier function. Oxygen, water vapor, and UV barriers were achieved using a stepwise assembly of cellulose nanofibers, biobased wax, and lignin particles supported by chitin nanofibers. We first engineered several designs containing CNFs and carnauba wax. Among them, we obtained low water vapor permeabilities in an assembly containing three layers, i.e., CNF/wax/CNF, in which wax was present as a continuous layer. We then incorporated a layer of lignin nanoparticles nucleated on chitin nanofibrils (LPChNF) to introduce a complete barrier against UV light, while maintaining film translucency. Our multilayer design which comprised CNF/wax/LPChNF enabled high oxygen (OTR of 3 ± 1 cm3/m2·day) and water vapor (WVTR of 6 ± 1 g/m2·day) barriers at 50% relative humidity. It was also effective against oil penetration. Oxygen permeability was controlled by the presence of tight networks of cellulose and chitin nanofibers, while water vapor diffusion through the assembly was regulated by the continuous wax layer. Lastly, we showcased our fully renewable packaging material for preservation of the texture of a commercial cracker (dry food). Our material showed functionality similar to that of the original packaging, which was composed of synthetic polymers. - Nanocellulose Removes the Need for Chemical Crosslinking in Tannin-Based Rigid Foams and Enhances Their Strength and Fire Retardancy
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2022-08-08) Missio, André Luiz; Otoni, Caio G.; Zhao, Bin; Beaumont, Marco; Khakalo, Alexey; Kämäräinen, Tero; Silva, Silvia H.F.; Mattos, Bruno D.; Rojas, Orlando J.Thermal insulation and fire protection are two of the most critical features affecting energy efficiency and safety in built environments. Together with the associated environmental footprint, there is a strong need to consider new insulation materials. Tannin rigid foams have been proposed as viable and sustainable alternatives to expanded polyurethanes, traditionally used in building enveloping. Tannin foams structure result from polymerization with furfuryl alcohol via self-expanding. We further introduce cellulose nanofibrils (CNFs) as a reinforcing agent that eliminates the need for chemical crosslinking during foam formation. CNF forms highly entangled and interconnected nanonetworks, at solid fractions as low as 0.1 wt %, enabling the formation of foams that are ca. 30% stronger and ca. 25% lighter compared to those produced with formaldehyde, currently known as one of the best performers in chemically coupling tannin and furfuryl alcohol. Compared to the those chemically crosslinked, our CNF-reinforced tannin foams display higher thermal degradation temperature (peak shifted upward, by 30-50 °C) and fire resistance (40% decrease in mass loss). Furthermore, we demonstrate partially hydrophobized CNF to tailor the foam microstructure and derived physical-mechanical properties. In sum, green and sustainable foams, stronger, lighter, and more resistant to fire are demonstrated compared to those produced by formaldehyde crosslinking. - Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2019-11-14) Ferreira, Filipe; Souza, Lucas P.; Martins, Thais M. M.; Lopes, Joao H.; Mattos, Bruno D.; Mariano, Marcos; Pinheiro, Ivanei F.; Valverde, Thalita M.; Livi, Sebastien; Camilli, Jose A.; Goes, Alfredo M.; Gouveia, Rubia F.; Lona, Liliane M. F.; Rojas, Orlando J.A major challenge exists in the preparation of scaffolds for bone regeneration, namely, achieving simultaneously bioactivity, biocompatibility, mechanical performance and simple manufacturing. Here, cellulose nanofibrils (CNF) are introduced for the preparation of scaffolds taking advantage of their biocompatibility and ability to form strong 3D porous networks from aqueous suspensions. CNF are made bioactive for bone formation through a simple and scalable strategy that achieves highly interconnected 3D networks. The resultant materials optimally combine morphological and mechanical features and facilitate hydroxyapatite formation while releasing essential ions for in vivo bone repair. The porosity and roughness of the scaffolds favor several cell functions while the ions act in the expression of genes associated with cell differentiation. Ion release is found critical to enhance the production of the bone morphogenetic protein 2 (BMP-2) from cells within the fractured area, thus accelerating the in vivo bone repair. Systemic biocompatibility indicates no negative effects on vital organs such as the liver and kidneys. The results pave the way towards a facile preparation of advanced, high performance CNF-based scaffolds for bone tissue engineering. - Pilot-Scaled Fast-Pyrolysis Conversion of Eucalyptus Wood Fines into Products: Discussion Toward Possible Applications in Biofuels, Materials, and Precursors
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2020-06-01) Matos, Mailson; Mattos, Bruno D.; de Cademartori, Pedro H.G.; Lourençon, Tainise V.; Hansel, Fabrício A.; Zanoni, Patrícia R.S.; Yamamoto, Carlos I.; Magalhães, Washington L.E.Based on a circular bioeconomy strategy, eucalypt wood fines rejected from a Kraft pulp line were used as starting material in a pilot-scaled fast-pyrolysis process. The bio-oil and its coproducts were characterized regarding their physical, chemical, and thermal aspects. We put in perspective their properties to bring forward considerations for applications on biofuels, materials, and precursors. The yields of the pilot-scaled fast-pyrolysis process reached interesting values even if compared with optimized laboratory conditions. The results indicated the highest heating values (22–27 MJ/kg) for bio-oil, char, and crust material. The higher water content of aqueous extract had a negative effect for its application as fuel. The lignin/carbohydrate ratio for the bio-oil (2.82) and aqueous extract (0.53) identified a higher concentration of lignin-derived compounds in the first, mainly syringyl units. Bio-oil and aqueous extract presented chemical compounds with many functionalities, such as syringaldehyde and levoglucosan, expanding their potential application for higher value-added products besides energy. - Plant Nanomaterials and Inspiration from Nature : Water Interactions and Hierarchically Structured Hydrogels
A2 Katsausartikkeli tieteellisessä aikakauslehdessä(2021-07-15) Ajdary, Rubina; Tardy, Blaise L.; Mattos, Bruno D.; Bai, Long; Rojas, Orlando J.Recent developments in the area of plant-based hydrogels are introduced, especially those derived from wood as a widely available, multiscale, and hierarchical source of nanomaterials, as well as other cell wall elements. With water being fundamental in a hydrogel, water interactions, hydration, and swelling, all critically important in designing, processing, and achieving the desired properties of sustainable and functional hydrogels, are highlighted. A plant, by itself, is a form of a hydrogel, at least at given states of development, and for this reason phenomena such as fluid transport, diffusion, capillarity, and ionic effects are examined. These aspects are highly relevant not only to plants, especially lignified tissues, but also to the porous structures produced after removal of water (foams, sponges, cryogels, xerogels, and aerogels). Thus, a useful source of critical and comprehensive information is provided regarding the synthesis of hydrogels from plant materials (and especially wood nanostructures), and about the role of water, not only for processing but for developing hydrogel properties and uses. - Regioselective and water-assisted surface esterification of never-dried cellulose: nanofibers with adjustable surface energy
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2021-09-21) Beaumont, Marco; Otoni, Caio G.; Mattos, Bruno D.; Koso, Tetyana V.; Abidnejad, Roozbeh; Zhao, Bin; Kondor, Anett; King, Alistair W. T.; Rojas, Orlando J.A new regioselective route is introduced for surface modification of biological colloids in the presence of water. Taking the case of cellulose nanofibers (CNFs), we demonstrate a site-specific (93% selective) reaction between the primary surface hydroxyl groups (C6-OH) of cellulose and acyl imidazoles. CNFs bearing C6-acetyl and C6-isobutyryl groups, with a degree of substitution of up to 1 mmol g(-1) are obtained upon surface esterification, affording CNFs of adjustable surface energy. The morphological and structural features of the nanofibers remain largely unaffected, but the regioselective surface reactions enable tailoring of their interfacial interactions, as demonstrated in oil/water Pickering emulsions. Our method precludes the need for drying or exchange with organic solvents for surface esterification, otherwise needed in the synthesis of esterified colloids and polysaccharides. Moreover, the method is well suited for application at high-solid content, opening the possibility for implementation in reactive extrusion and compounding. The proposed acylation is introduced as a sustainable approach that benefits from the presence of water and affords a high chemical substitution selectivity. - Single-step fiber pretreatment with monocomponent endoglucanase : Defibrillation energy and cellulose nanofibril quality
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2021-02-08) Berto, Gabriela L.; Mattos, Bruno D.; Rojas, Orlando J.; Arantes, ValdeirThe combination of enzymatic pretreatment of cellulose fibers followed by mechanical defibrillation has become a green and low-energy route to obtain cellulose nanofibrils (CNF). However, the variability in the properties of the as-produced CNF remains a major challenge that needs to be addressed for any application to be realized. Herein, we study the effect of monocomponent endoglucanase (EG) on the energy consumed in defibrillation as well as the physical properties of the obtained CNF. This single-step enzymatic pretreatment (0.5−25 EGU/g cellulose fibers for 1−3 h) reduces the defibrillation energy (by up to 50%) at nearly 100% yield to obtain CNF of a similar morphology, size, and crystallinity compared to CNF obtained in the absence of pretreatment. Under mild conditions (5.6 EGU/g for 1 h), aiming to minimize energy consumption while preserving rheological properties, EG pretreatment increased the water retention value, reduced the molecular weight, and promoted structural surface modification (amorphogenesis), without significant cellulose solubilization. In addition, the carbohydrate binding module of the EG was found to improve the interaction of the catalytic core with the substrate. The combination of the factors considered here boosts the effect of the enzyme even if used at low loadings, facilitating high-yield, more sustainable production of CNF. - Spherical lignin particles : a review on their sustainability and applications
A2 Katsausartikkeli tieteellisessä aikakauslehdessä(2020-05-07) Österberg, Monika; Sipponen, Mika H.; Mattos, Bruno D.; Rojas, Orlando J.There is an increased interest in renewable carbon as a source of materials, where lignin is expected to play a prominent role. This stems, partially, from new regulations aiming to achieve a cleaner and safer environment. Lignin, as a polyaromatic plant-derived biomolecule, is not only abundant but widely accessible in industrial streams. Due to recent developments in production scalability as well as promising application prospects, nanoscaled lignin particles have recently generated interest in the research and industrial communities. This review describes the main routes to prepare spherical lignin particles, highlighting aspects associated to their shape and topology as well as performance. We discuss the use of spherical lignin particles as dispersants and in the formulation of coatings, adhesives and composites, focusing on the advantages of the spherical shape and nanoscaled size. The state of the particles is furthermore compared in terms of their applicability in dry and wet forms. Finally, we discuss the sustainability, stability and degradation of lignin particles, which are issues that are critically important for any prospective use. - Superstable Wet Foams and Lightweight Solid Composites from Nanocellulose and Hydrophobic Particles
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2021-12-28) Abidnejad, Roozbeh; Beaumont, Marco; Tardy, Blaise L.; Mattos, Bruno D.; Rojas, Orlando J.Colloids are suitable options to replace surfactants in the formation of multiphase systems while simultaneously achieving performance benefits. We introduce synergetic combination of colloids for the interfacial stabilization of complex fluids that can be converted into lightweight materials. The strong interactions between high aspect ratio and hydrophilic fibrillated cellulose (CNF) with low aspect ratio hydrophobic particles afford superstable Pickering foams. The foams were used as a scaffolding precursor of porous, solid materials. Compared to foams stabilized by the hydrophobic particles alone, the introduction of CNF significantly increased the foamability (by up to 350%) and foam lifetime. These effects are ascribed to the fibrillar network formed by CNF. The CNF solid fraction regulated the interparticle interactions in the wet foam, delaying or preventing drainage, coarsening, and bubble coalescence. Upon drying, such a complex fluid was transformed into lightweight and strong architectures, which displayed properties that depended on the surface energy of the CNF precursor. We show that CNF combined with hydrophobic particles universally forms superstable complex fluids that can be used as a processing route to synthesize strong composites and lightweight structures. - Tessellation of Chiral-Nematic Cellulose Nanocrystal Films by Microtemplating
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2019-06-21) Tardy, Blaise L.; Mattos, Bruno D.; Greca, Luiz G.; Kämäräinen, Tero; Klockars, Konrad W.; Rojas, Orlando J.In biological architectures, material properties are optimized by the hierarchical structuring of components with a multiscaled order, from the nano- to the macroscales. Such designs enable, for instance, programmed yield points that maximize toughness. However, research efforts in biomimetic materials have focused on the assembly of nano- or macrostructures individually. In this study, high strength cellulose nanocrystals (CNCs), assembled into chiral-nematically ordered structures, are tiled into a higher level, macro-sized, architecture by topographical templating. As templates, two meshed architectures with distinct feature sizes are evaluated, and the optomechanical properties of the resulting films are compared to featureless, flat, CNC films. Controlling capillary stresses arising during CNC assembly is shown to enable control over the orientation of the chiral-nematic director across the topography of the template. Tuning the specific reflections and multiscaled fracture propagation is demonstrated for the microtemplated CNC films. The latter phenomenon contributed to enhancing the toughness of the material through a high tortuosity of fracture propagation in all (x, y, z) directions. The presented findings are expected to pave the way towards the incorporation of current research in cellular metamaterials with the research focusing on the generation of nanoscaled biomimetic constructs. - Thermally Resistant, Self-Extinguishing Thermoplastic Composites Enabled by Tannin-Based Carbonaceous Particulate
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2022-09) Missio, André L.; Delucis, Rafael A.; Gomide Otoni, Caio; de Cademartori, Pedro H.G.; Coldebella, Rodrigo; Aramburu, Arthur B.; Mattos, Bruno D.; Rodrigues, Marlon B.B.; Lunkes, Nayara; Gatto, Darci A.; Labidi, JalelFlame-resistant materials are key components in buildings and several other engineering applications. In this study, flame retardancy and thermal stability were conferred to a highly flammable technical thermoplastic—polypropylene (PP)—upon compositing with a carbonaceous tannin-based particulate (CTP). Herein, we report on a straightforward, facile, and green approach to prepare self-extinguishing thermoplastic composites by thermoblending highly recalcitrant particulate. The thermal stability and mechanical properties of the composites are tethered to the CTP content. We demonstrate that the addition of up to 65 wt% of CTP improved the viscoelastic properties and hydrophobicity of the PP, whereas having marginal effects on bulk water interactions. Most importantly, compositing with CTP remarkably improved the thermal stability of the composites, especially over 300 °C, which is an important threshold associated with the combustion of volatiles. PP-CTP composites demonstrated great capacity to limit and stop fire propagation. Therefore, we offer an innovative route towards thermally resistant and self-extinguishing PP composites, which is enabled by sustainable tannin-based flame retardants capable of further broadening the technical range of commodity polyolefins to high temperature scenarios.