Browsing by Author "Lu, Hua"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
- Flexible high-repetition-rate ultrafast fiber laser
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2013) Mao, Dong; Liu, Xueming; Sun, Zhipei; Lu, Hua; Han, Dongdong; Wang, Guoxi; Wang, FengqiuHigh-repetition-rate pulses have widespread applications in the fields of fiber communications, frequency comb, and optical sensing. Here, we have demonstrated high-repetition-rate ultrashort pulses in an all-fiber laser by exploiting an intracavity Mach-Zehnder interferometer (MZI) as a comb filter. The repetition rate of the laser can be tuned flexibly from about 7 to 1100 GHz by controlling the optical path difference between the two arms of the MZI. The pulse duration can be reduced continuously from about 10.1 to 0.55 ps with the spectral width tunable from about 0.35 to 5.7 nm by manipulating the intracavity polarization controller. Numerical simulations well confirm the experimental observations and show that filter-driven four-wave mixing effect, induced by the MZI, is the main mechanism that governs the formation of the high-repetition-rate pulses. This all-fiber-based laser is a simple and low-cost source for various applications where high-repetition-rate pulses are necessary. - Ultrafast all-fiber based cylindrical-vector beam laser
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2017-01-09) Mao, Dong; Feng, Tianxian; Zhang, Wending; Lu, Hua; Jiang, Yajun; Li, Peng; Jiang, Biqiang; Sun, Zhipei; Zhao, JianlinCylindrical-vector beams (CVBs) with axial symmetry in polarization and field intensity are gathering increasing attention from fundamental research to practical applications. However, a majority of the CVBs are generated by modulating light beams in free space, and the temporal durations are far away from the ultrafast regime. Here, an ultrafast all-fiber based CVB laser is demonstrated via intermodal coupling in two mode fibers. In the temporal domain, chirp-free pulses are formed with combined actions of the ultrafast saturable absorption, self-phase modulation, and anomalous dispersion. In the spatial domain, the lateral offset splicing technique and a two mode fiber Bragg grating are adopted to excite and extract CVBs, respectively. The ultrafast CVB has an annular profile with a duration of 6.87 ps and a fundamental repetition rate of 13.16 MHz, and the output polarization status is switchable between radially and azimuthally polarized states. This all-fiber-based ultrafast CVB laser is a simple, low-cost source for diversified applications of nanoparticle manipulation, high-resolution imaging, material processing, spatiotemporal nonlinear optics, etc. - Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2013) Liu, Xueming; Han, Dongdong; Sun, Zhipei; Zeng, Chao; Lu, Hua; Mao, Dong; Cui, Yudong; Wang, FengqiuMulti-wavelength lasers have widespread applications (e.g. fiber telecommunications, pump-probe measurements, terahertz generation). Here, we report a nanotube-mode-locked all-fiber ultrafast oscillator emitting three wavelengths at the central wavelengths of about 1540, 1550, and 1560 nm, which are tunable by stretching fiber Bragg gratings. The output pulse duration is around 6 ps with a spectral width of ~0.5 nm, agreeing well with the numerical simulations. The triple-laser system is controlled precisely and insensitive to environmental perturbations with <0.04% amplitude fluctuation. Our method provides a simple, stable, low-cost, multi-wavelength ultrafast-pulsed source for spectroscopy, biomedical research and telecommunications.