Browsing by Author "Lendasse, Amaury; Dos."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Funktionalinen dimensionalisuuden pienentäminen koneoppimista varten(Helsinki University of Technology, 2007) Kärnä, Tuomas; Lendasse, Amaury; Dos.; Department of Electrical and Communications Engineering; Sähkö- ja tietoliikennetekniikan osasto; Laboratory of Computer and Information Science; Informaatiotekniikan laboratorio; Simula, Olli; Prof.Monimuuttuja-analyysissä korkeadimensioinen informaatio yleistyy jatkuvasti. Korkean dimension seurauksena laskenta-ajat kasvavat ja ongelmia aiheutuu myös nk. dimensionalisuuden kirouksen (curse of dimensionality) seurauksena. Tämä diplomityö koskee funktionaliseen data analyysiin perustuvaa dimensionalisuuden pienetämismenetelmää. Tässä menetelmässä korkeadimensioinen informaatio projisoidaan funktioavaruuteen jossa se voidaan kuvata yksinkertasemmassa muodossa. Funktioavaruus määritellään Gaussisten kantafunktioiden avulla, jotka on sovitetty kyseessä olevaan ongelmaan mahdollisimman hyvin. Esitetyttyä menetelmää sovelletaan kemometriaan ja aikasarjaennustukseen. Regressioon käytetään molemmissa tapauksissa pienimmän neliösumman tukivektorikonetta (Least-Squares Support Vector Machine). Koetulokset osoittavat, että dimensionalisuutta voidaan pienentää merkittävästi. Lisäksi saavutettu ennustustarkkuus on parempi tai vähintään samantasoinen verrattuna muihin yleisesti käytössä oleviin menetelmiin.