Browsing by Author "Laurila, T."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
- Influence of disorder strength on phase-field models of interfacial growth
School of Science | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2008) Laurila, T.; Pradas, M.; Hernández-Machado, A.; Ala-Nissilä, TapioWe study the influence of disorder strength on the interface roughening process in a phase-field model with locally conserved dynamics. We consider two cases where the mobility coefficient multiplying the locally conserved current is either constant throughout the system (the two-sided model) or becomes zero in the phase into which the interface advances (one-sided model). In the limit of weak disorder, both models are completely equivalent and can reproduce the physical process of a fluid diffusively invading a porous media, where super-rough scaling of the interface fluctuations occurs. On the other hand, increasing disorder causes the scaling properties to change to intrinsic anomalous scaling. In the limit of strong disorder this behavior prevails for the one-sided model, whereas for the two-sided case, nucleation of domains in front of the invading front are observed. - Interface equations for capillary rise in random environment
School of Science | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2006) Laurila, T.; Tong, C.; Majaniemi, S.; Ala-Nissilä, TapioWe consider the influence of quenched noise upon interface dynamics in two-dimensional (2D) and 3D capillary rise with rough walls by using a phase-field approach, where the local conservation of mass in the bulk is explicitly included. In the 2D case, the disorder is assumed to be in the effective mobility coefficient, while in the 3D case we explicitly consider the influence of locally fluctuating geometry along a solid wall using a generalized curvilinear coordinate transformation. To obtain the equations of motion for meniscus andcontact lines, we develop a systematic projection formalism that allows inclusion of disorder. Using this formalism, we derive linearized equations of motion for the meniscus and contact line variables, which become local in the Fourier space representation. These dispersion relations contain effective noise that is linearly proportional to the velocity. The deterministic parts of our dispersion relations agree with results obtained from other similar studies in the proper limits. However, the forms of the noise terms derived here are quantitatively different from the other studies. - Many-particle diffusion in continuum: Influence of a periodic surface potential
School of Science | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2002) Lahtinen, J. M.; Masin, M.; Laurila, T.; Ala-Nissilä, Tapio; Chvoj, Z.We study the diffusion of Brownian particles with a short-range repulsion on a surface with a periodic potential through molecular dynamics simulations and theoretical arguments. We concentrate on the behavior of the tracer and collective diffusion coefficients DT(θ) and DC(θ), respectively, as a function of the surface coverage θ. In the high friction regime we find that both coefficients are well approximated by the Langmuir lattice-gas results for up to θ≈0.7 in the limit of a strongly binding surface potential. In particular, the static compressibility factor within DC(θ) is very accurately given by the Langmuir formula for 0⩽θ⩽1. For higher densities, both DT(θ) and DC(θ)show an intermediate maximum which increases with the strength of the potential amplitude. In the low friction regime we find that long jumps enhance blocking and DT(θ) decreases more rapidly for submonolayer coverages. However, for higher densities DT(θ)/DT(0) is almost independent of friction as long jumps are effectively suppressed by frequent interparticle collisions. We also study the role of memory effects for many-particle diffusion. - Thermohydrodynamics of boiling in a van der Waals fluid
School of Science | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2012) Laurila, T.; Carlson, A.; Do-Quang, M.; Ala-Nissilä, Tapio; Amberg, G.We present a modeling approach that enables numerical simulations of a boiling Van der Waals fluid based on the diffuse interface description. A boundary condition is implemented that allows in and out flux of mass at constant external pressure. In addition, a boundary condition for controlled wetting properties of the boiling surface is also proposed. We present isothermal verification cases for each element of our modeling approach. By using these two boundary conditions we are able to numerically access a system that contains the essential physics of the boiling process at microscopic scales. Evolution of bubbles under film boiling and nucleate boiling conditions are observed by varying boiling surface wettability. We observe flow patters around the three-phase contact line where the phase change is greatest. For a hydrophilic boiling surface, a complex flow pattern consistent with vapor recoil theory is observed. - Three-Dimensional Fine Structure of Nanometer-Scale Nafion Thin Films
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2021-02-12) Peltonen, A.; Etula, J.; Seitsonen, J.; Engelhardt, P.; Laurila, T.Nafion is a widely used polymer membrane in various applications ranging from advanced energy solutions to sensing of biomolecules. Despite the intensive research carried out over the years to reveal and understand the fine structure of Nafion, its structural features, especially as nanometer-scale films, are not unambiguously known. In this paper, we use room temperature scanning transmission electron microscopy (STEM) tomography complemented by glancing incidence small-angle X-ray scattering (GISAXS) and TEM at low temperatures to reveal the fine structure of thin (10-100 nm) unannealed Nafion films. The results from the detailed three-dimensional reconstructions obtained show that (i) the phase fractions of the hydrophobic and hydrophilic parts of the polymer are somewhat thickness-dependent, changing from 0.65/0.35 to about 0.7/0.3 when moving from 100 to 10 nm thick films; (ii) the channel diameters show a range of values from 3 to 6 nm in all the films independent of their thickness; (iii) the average distances between the hydrophilic channels inside the film have distributions centered around 12 nm (in 10 nm films), 15 nm (in 30 nm films), and 7 nm (in 100 nm films); (iv) in the thickest films, the hydrophilic channels exhibit higher interconnectivity and some of the channels appear to end within the Nafion film instead of going through the films; and (v) there are some confinement effects caused by the hydrophilic SiO2 surface in the case of 10 and 30 nm thick films shown by the tendency of the hydrophilic channels to move horizontally near the substrate. Furthermore, a stable room temperature STEM tomography imaging method for Nafion films and a sample preparation method that preserves the characteristics of the hydrated morphology of Nafion in the dry state are demonstrated. These results provide a deeper understanding of the fine structure of Nafion thin films and provide a better means to characterize and understand their properties in different applications.