Browsing by Author "Klockars, Konrad W."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
- Asymmetrical coffee rings from cellulose nanocrystals and prospects in art and design
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2019-01-15) Klockars, Konrad W.; Yau, Noora E.; Tardy, Blaise L.; Majoinen, Johanna; Kämäräinen, Tero; Miettunen, Kati; Boutonnet, Elisa; Borghei, Maryam; Beidler, Jaana; Rojas, Orlando J.The iridescence displayed by films made from cellulose nanocrystals (CNCs) has long been the subject of fundamental research. This has expanded our understanding of colloidal self-assembly towards the development of advanced materials. However, the application of such findings is less reported for visual designs that exploit structural color. Aesthetic outputs are already in reach, but requires input from trend setters in the design and art industries. In this realm, the CNC-based iridescence uniquely offers broadband, multi-colored reflections through the “coffee ring” effect, which arises upon evaporation-induced self-assembly (EISA). Although this effect has been thoroughly studied in the context of axisymmetric patterns, complex geometries remain to be evaluated for large-scale implementation. This is central to the present efforts, where EISA of CNC suspensions occurred onto non-circular surfaces. We used orientation-dependent contact angle measurements, profilometry and fixed-light source photography to unveil the effect of asymmetric drying fluxes at sharp angles, between 30° and 90°, on CNC particle deposition and resulting color patterns. We also demonstrate the causality between increased capillary fluxes and deposition with the help of modelling via energy minimization of the suspension volume onto a given surface and using the diffusion equation to obtain the local concentration of water vapor during EISA. Lastly, we study the effect of background reflections as well as light and temperature resistance of CNC-based reflectors, both important for any deployment. The results from this multidisciplinary effort, involving applied design, art and colloid chemistry, point to the excellent prospects of CNC films for the development of structured and chromatic patterns. Graphical abstract: [Figure not available: see fulltext.]. - Drying stresses in cellulose nanocrystal coatings: Impact of molecular and macromolecular additives
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2023-03-01) Klockars, Konrad W.; Greca, Luiz G.; Majoinen, Johanna; Mihhels, Karl; Rojas, Orlando J.; Tardy, Blaise L.The industrial implementation of cellulose nanocrystals (CNCs) in films and coatings requires thorough evaluation of the internal stresses post-consolidation, as they cause fracturing and peeling. Characterizing the impact of plasticizing additives on stress is therefore critical. Herein, we use the deflection of thin glass substrates to measure drying stresses in consolidating CNC films, and benchmark the impact of five additives (glucose, glycerol, poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA) and bovine serum albumin). Glycerol and PEG reduced drying stresses effectively, while PEG of increased molecular weight (from 0.2 to 10 kDa), PVA, and BSA were less effective. We analyzed the temporal aspects of the process, where stress relaxation of up to 30 % was observed 2 years after coating formation. Finally, we provide a framework to evaluate the impact of CNC morphology on residual stresses. The introduced approach is expected to fast-track the optimization and implementation of coatings based on biocolloids. - Drying stresses to tune strength and long-range order in nanocellulosic materials
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2023-09) Greca, Luiz G.; Klockars, Konrad W.; Rojas, Orlando J.; Tardy, Blaise L.A vast range of extraction processes, chemistries, and wet processing methods have been explored to improve the opto-mechanical properties of nanocellulosic materials. However, the stresses that arise during drying have been scarcely examined, in particular for their impact on performance. As with papermaking, drying is a critical step that significantly impacts the properties of nanocellulosic materials. The nano- and micro-scaled dimensions of nanocelluloses provide opportunities beyond those achievable in paper science, as the associated drying stresses are several orders of magnitude higher than those at the macroscale. Drying may be utilized towards the generation of assemblies with functional structures and enhanced properties. Herein, we highlight recent examples where such drying stresses are tethered to the structure of nanocellulosic materials. Using cellulose nanocrystals (CNCs), we investigate how the stresses that develop upon consolidation, and that remain thereafter (i.e., residual stresses), correlate with the mechanical performance of the obtained materials. We extend this analysis through results that highlight the impact of the “history” of drying of CNCs on the dynamics of the residual stresses. We also briefly discuss how inhomogeneous concentration gradients in drying suspensions may play an important role in the formation of superstructures across a range of nanocellulosic materials. Overall, by highlighting the importance of drying, we expect a more closely scrutinized science of drying to improve the properties of structures based on nanocellulose. - Infiltration of Proteins in Cholesteric Cellulose Structures
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2021-05-10) Bast, Livia K.; Klockars, Konrad W.; Garcia Greca, Luiz; Rojas, Orlando J.; Tardy, Blaise L.; Bruns, NicoCellulose nanocrystals (CNCs) can spontaneously self-assemble into chiral nematic (cn) structures, similar to natural cholesteric organizations. The latter display highly dissipative fracture propagation mechanisms given their "brick" (particles) and "mortar" (soft matrix) architecture. Unfortunately, CNCs in liquid media have strong supramolecular interactions with most macromolecules, leading to aggregated suspensions. Herein, we describe a method to prepare nanocomposite materials from chiral nematic CNCs (cn-CNCs) with strongly interacting secondary components. Films of cn-CNCs were infiltrated at various loadings with strongly interacting silk proteins and bovine serum albumin. For comparison and to determine the molecular weight range of macromolecules that can infiltrate cn-CNC films, they were also infiltrated with a range of poly(ethylene glycol) polymers that do not interact strongly with CNCs. The extent and impact of infiltration were evaluated by studying the optical reflection properties of the resulting hybrid materials (UV-vis spectroscopy), while fracture dissipation mechanisms were observed via electron microscopy. We propose that infiltration of cn-CNCs enables the introduction of virtually any secondary phase for nanocomposite formation that is otherwise not possible using simple mixing or other conventional approaches. - Tessellation of Chiral-Nematic Cellulose Nanocrystal Films by Microtemplating
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2019-06-21) Tardy, Blaise L.; Mattos, Bruno D.; Greca, Luiz G.; Kämäräinen, Tero; Klockars, Konrad W.; Rojas, Orlando J.In biological architectures, material properties are optimized by the hierarchical structuring of components with a multiscaled order, from the nano- to the macroscales. Such designs enable, for instance, programmed yield points that maximize toughness. However, research efforts in biomimetic materials have focused on the assembly of nano- or macrostructures individually. In this study, high strength cellulose nanocrystals (CNCs), assembled into chiral-nematically ordered structures, are tiled into a higher level, macro-sized, architecture by topographical templating. As templates, two meshed architectures with distinct feature sizes are evaluated, and the optomechanical properties of the resulting films are compared to featureless, flat, CNC films. Controlling capillary stresses arising during CNC assembly is shown to enable control over the orientation of the chiral-nematic director across the topography of the template. Tuning the specific reflections and multiscaled fracture propagation is demonstrated for the microtemplated CNC films. The latter phenomenon contributed to enhancing the toughness of the material through a high tortuosity of fracture propagation in all (x, y, z) directions. The presented findings are expected to pave the way towards the incorporation of current research in cellular metamaterials with the research focusing on the generation of nanoscaled biomimetic constructs.