Browsing by Author "Keeling, D."
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
- The core-edge integrated neon-seeded scenario in deuterium-tritium at JET
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2024-10) Giroud, C.; Carvalho, I. S.; Brezinsek, S.; Huber, A.; Keeling, D.; Mailloux, J.; Pitts, R. A.; Lerche, E.; Henriques, R.; Hillesheim, J.; Lawson, K.; Marin, M.; Pawelec, E.; Sos, M.; Sun, H. J.; Tomes, M.; Aleiferis, S.; Bleasdale, A.; Brix, M.; Boboc, A.; Bernardo, J.; Carvalho, P.; Coffey, I.; Henderson, S.; King, D. B.; Rimini, F.; Maslov, M.; Alessi, E.; Craciunescu, T.; Fontana, M.; Fontdecaba, J. M.; Garzotti, L.; Ghani, Z.; Horvath, L.; Jepu, I.; Karhunen, J.; Kos, D.; Litherland-Smith, E.; Meigs, A.; Menmuir, S.; Morales, R. B.; Nowak, S.; Peluso, E.; Pereira, T.; Parail, V.; Petravich, G.; Pucella, G.; Puglia, P.; Refy, D.; Scully, S.; , JET ContributorsThis paper reports the first experiment carried out in deuterium-tritium addressing the integration of a radiative divertor for heat-load control with good confinement. Neon seeding was carried out for the first time in a D-T plasma as part of the second D-T campaign of JET with its Be/W wall environment. The technical difficulties linked to the re-ionisation heat load are reported in T and D-T. This paper compares the impact of neon seeding on D-T plasmas and their D counterpart on the divertor detachment, localisation of the radiation, scrape-off profiles, pedestal structure, edge localised modes and global confinement. - Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2019-06-26) Labit, B.; Eich, T.; Harrer, G. F.; Wolfrum, E.; Bernert, M.; Dunne, M. G.; Frassinetti, L.; Hennequin, P.; Maurizio, R.; Merle, A.; Meyer, H.; Saarelma, S.; Sheikh, U.; Adamek, J.; Agostini, M.; Aguiam, D.; Akers, R.; Albanese, Raffaele; Albert, C.; Alessi, E.; Ambrosino, R.; Andr be, Y.; Angioni, C.; Apruzzese, G.; Aradi, M.; Arnichand, H.; Auriemma, F.; Avdeeva, G.; Ayllon-Guerola, J. M.; Bagnato, F.; Bandaru, V. K.; Barnes, M.; Barrera-Orte, L.; Bettini, P.; Bilato, R.; Biletskyi, O.; Bilkova, P.; Bin, William; Blanchard, P.; Blanken, T.; Bobkov, V.; Bock, A.; Boeyaert, D.; Bogar, K.; Bogar, O.; Bohm, P.; Bolzonella, T.; Bombarda, F.; Boncagni, L.; Bouquey, F.; Bowman, C.; Brezinsek, S.; Brida, D.; Brunetti, D.; Bucalossi, J.; Buchanan, J.; Buermans, J.; Bufferand, H.; Buller, S.; Buratti, P.; Burckhart, A.; Calabr, G.; Calacci, L.; Camenen, Y.; Cannas, B.; Cano Megías, P.; Carnevale, D.; Carpanese, F.; Carr, M.; Carralero, D.; Carraro, L.; Casolari, A.; Cathey, A.; Causa, F.; Cavedon, M.; Cecconello, M.; Ceccuzzi, S.; Cerovsky, J.; Chapman, S.; Chmielewski, P.; Choi, D.; Cianfarani, C.; Ciraolo, G.; Coda, S.; Coelho, R.; Colas, L.; Colette, D.; Cordaro, L.; Cordella, F.; Costea, S.; Coster, D.; Cruz Zabala, D. J.; Cseh, G.; Czarnecka, A.; Cziegler, I.; D'Arcangelo, O.; Dal Molin, A.; David, P.; De Carolis, G.; De Oliveira, H.; Decker, J.; Dejarnac, R.; Delogu, R.; Den Harder, N.; Dimitrova, M.; Dolizy, F.; Domínguez-Palacios Durán, J. J.; Douai, D.; Drenik, A.; Dreval, M.; Dudson, B.; Dunai, D.; Duval, B. P.; Dux, R.; Elmore, S.; Embréus, O.; Erds, B.; Fable, E.; Faitsch, M.; Fanni, A.; Farnik, M.; Faust, I.; Faustin, J.; Fedorczak, N.; Felici, F.; Feng, S.; Feng, X.; Ferreira, J.; Ferr, G.; Février, O.; Ficker, O.; Figini, L.; Figueiredo, A.; Fil, A.; Fontana, M.; Francesco, M.; Fuchs, C.; Futatani, S.; Gabellieri, L.; Gadariya, D.; Gahle, D.; Galassi, D.; Gałązka, K.; Galdon-Quiroga, J.; Galeani, S.; Gallart, D.; Gallo, A.; Galperti, C.; Garavaglia, S.; Garcia, J.; Garcia-Lopez, Javier; Garcia-Mu oz, M.; Garzotti, L.; Gath, J.; Geiger, B.; Giacomelli, L.; Giannone, L.; Gibson, S.; Gil, L.; Giovannozzi, E.; Giruzzi, G.; Gobbin, M.; Gonzalez-Martin, J.; Goodman, T. P.; Gorini, G.; Gospodarczyk, M.; Granucci, G.; Grekov, D.; Grenfell, G.; Griener, M.; Groth, M.; Grover, O.; Gruca, M.; Gude, A.; Guimarais, L.; Gyergyek, T.; Hacek, P.; Hakola, A.; Ham, C.; Happel, T.; Harrison, J.; Havranek, A.; Hawke, J.; Henderson, S.; Hesslow, L.; Hitzler, F.; Hnat, B.; Hobirk, J.; Hoelzl, M.; Hogeweij, D.; Hopf, C.; Hoppe, M.; Horacek, J.; Hron, M.; Huang, Z.; Iantchenko, A.; Iglesias, D.; Igochine, V.; Innocente, P.; Ionita-Schrittwieser, C.; Isliker, H.; Ivanova-Stanik, I.; Jacobsen, A.; Jakubowski, M.; Janky, F.; Jardin, A.; Jaulmes, F.; Jensen, T.; Jonsson, T.; Kallenbach, A.; Kappatou, A.; Karpushov, A.; Kasilov, S.; Kazakov, Y.; Kazantzidis, P. V.; Keeling, D.; Kelemen, M.; Kendl, A.; Kernbichler, W.; Kirk, A.; Kocsis, G.; Komm, M.; Kong, M.; Korovin, V.; Koubiti, M.; Kovacic, J.; Krawczyk, N.; Krieger, K.; Kripner, L.; Křivská, A.; Kudlacek, O.; Kulyk, Y.; Kurki-Suonio, T.; Kwiatkowski, R.; Laggner, F.; Laguardia, L.; Lahtinen, A.; Lang, P.; Likonen, J.; Lipschultz, B.; Liu, Fukun; Lombroni, R.; Lorenzini, R.; Loschiavo, V. P.; Lunt, T.; MacUsova, E.; Madsen, J.; Maggiora, R.; Maljaars, B.; Manas, P.; Mantica, P.; Mantsinen, M. J.; Manz, P.; Maraschek, M.; Marchenko, V.; Marchetto, C.; Mariani, A.; Marini, C.; Markovic, T.; Marrelli, L.; Martin, P.; Martín Solís, J. R.; Martitsch, A.; Mastrostefano, S.; Matos, F.; Matthews, G.; Mayoral, M. L.; Mazon, D.; Mazzotta, C.; Mc Carthy, P.; McClements, K.; McDermott, R.; McMillan, B.; Meineri, C.; Menkovski, V.; Meshcheriakov, D.; Messmer, M.; Micheletti, D.; Milanesio, D.; Militello, F.; Miron, I. G.; Mlynar, J.; Moiseenko, V.; Molina Cabrera, P. A.; Morales, J.; Moret, J. M.; Moro, A.; Moulton, D.; Nabais, F.; Naulin, V.; Naydenkova, D.; Nem, R. D.; Nespoli, F.; Newton, S.; Nielsen, A. H.; Nielsen, S. K.; Nikolaeva, V.; Nocente, M.; Nowak, S.; Oberkofler, M.; Ochoukov, R.; Ollus, P.; Olsen, J.; Omotani, J.; Ongena, J.; Orain, F.; Orsitto, F. P.; Paccagnella, R.; Palha, A.; Panaccione, L.; Panek, R.; Panjan, M.; Papp, G.; Paradela Perez, I.; Parra, F.; Passeri, M.; Pau, A.; Pautasso, G.; Pavlichenko, R.; Perek, A.; Pericoli Radolfini, V.; Pesamosca, F.; Peterka, M.; Petrzilka, V.; Piergotti, V.; Pigatto, L.; Piovesan, P.; Piron, C.; Piron, L.; Plyusnin, V.; Pokol, G.; Poli, E.; Pölöskei, P.; Popov, T.; Popovic, Z.; Pór, G.; Porte, L.; Pucella, G.; Puiatti, M. E.; Pütterich, T.; Rabinski, M.; Juul Rasmussen, J.; Rasmussen, J.; Rattá, G. A.; Ratynskaia, S.; Ravensbergen, T.; Réfy, D.; Reich, M.; Reimerdes, H.; Reimold, F.; Reiser, D.; Reux, C.; Reznik, S.; Ricci, D.; Rispoli, N.; Rivero-Rodriguez, J. F.; Rocchi, G.; Rodriguez-Ramos, M.; Romano, A.; Rosato, J.; Rubinacci, G.; Rubino, G.; Ryan, D. A.; Salewski, M.; Salmi, A.; Samaddar, D.; Sanchis-Sanchez, L.; Santos, J.; Särkimäki, K.; Sassano, M.; Sauter, O.; Scannell, R.; Scheffer, M.; Schneider, B. S.; Schneider, P.; Schrittwieser, R.; Schubert, M.; Seidl, J.; Seliunin, E.; Sharapov, S.; Sheeba, R. R.; Sias, G.; Sieglin, B.; Silva, C.; Sipilä, S.; Smith, S.; Snicker, A.; Solano, E. R.; Hansen, S. K.; Soria-Hoyo, C.; Sorokovoy, E.; Sozzi, C.; Sperduti, A.; Spizzo, G.; Spolaore, M.; Stejner, M.; Stipani, L.; Stober, J.; Strand, P.; Sun, H.; Suttrop, W.; Sytnykov, D.; Szepesi, T.; Tál, B.; Tala, T.; Tardini, G.; Tardocchi, M.; Teplukhina, A.; Terranova, D.; Testa, D.; Theiler, C.; Thorén, E.; Thornton, A.; Tilia, B.; Tolias, P.; Tomes, M.; Toscano-Jimenez, M.; Tsironis, C.; Tsui, C.; Tudisco, O.; Urban, J.; Valisa, M.; Vallar, M.; Vallejos Olivares, P.; Valovic, M.; Van Vugt, D.; Vanovac, B.; Varje, J.; Varju, J.; Varoutis, S.; Vartanian, S.; Vasilovici, O.; Vega, J.; Verdoolaege, G.; Verhaegh, K.; Vermare, L.; Vianello, Nicola; Vicente, J.; Viezzer, E.; Villone, F.; Voitsekhovitch, I.; Voltolina, D.; Vondracek, P.; Vu, N. M.T.; Walkden, N.; Wauters, T.; Weiland, M.; Weinzettl, V.; Wensing, M.; Wiesen, S.; Wiesenberger, M.; Wilkie, G.; Willensdorfer, M.; Wischmeier, M.; Wu, K.; Xiang, L.; Zagorski, R.; Zaloga, D.; Zanca, P.; Zaplotnik, R.; Zebrowski, J.; Zhang, Wei; Zisis, A.; Zoletnik, S.; Zuin, M.; Wu, KaiWithin the EUROfusion MST1 work package, a series of experiments has been conducted on AUG and TCV devices to disentangle the role of plasma fueling and plasma shape for the onset of small ELM regimes. On both devices, small ELM regimes with high confinement are achieved if and only if two conditions are fulfilled at the same time. Firstly, the plasma density at the separatrix must be large enough (ne,sep/nG ∼ 0.3), leading to a pressure profile flattening at the separatrix, which stabilizes type-I ELMs. Secondly, the magnetic configuration has to be close to a double null (DN), leading to a reduction of the magnetic shear in the extreme vicinity of the separatrix. As a consequence, its stabilizing effect on ballooning modes is weakened. - Isotope dependence of the type i ELMy H-mode pedestal in JET-ILW hydrogen and deuterium plasmas
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2021-04) Horvath, L.; Maggi, C. F.; Chankin, A.; Saarelma, S.; Field, A. R.; Aleiferis, S.; Belonohy, E.; Boboc, A.; Corrigan, G.; Delabie, E. G.; Flanagan, J.; Frassinetti, L.; Giroud, C.; Harting, D.; Keeling, D.; King, D.; Maslov, M.; Matthews, G. F.; Menmuir, S.; Silburn, S. A.; Simpson, J.; Sips, A. C.C.; Weisen, H.; Gibson, K. J.; , JET ContributorsThe pedestal structure, edge transport and linear MHD stability have been analyzed in a series of JET with the ITER-like wall hydrogen (H) and deuterium (D) type I ELMy H-mode plasmas. The pedestal pressure is typically higher in D than in H at the same input power and gas rate, with the difference mainly due to lower density in H than in D (Maggi et al (JET Contributors) 2018 Plasma Phys. Control. Fusion 60 014045). A power balance analysis of the pedestal has shown that higher inter-ELM separatrix loss power is required in H than in D to maintain a similar pedestal top pressure. This is qualitatively consistent with a set of interpretative EDGE2D-EIRENE simulations for H and D plasmas, showing that higher edge particle and heat transport coefficients are needed in H than in D to match the experimental profiles. It has also been concluded that the difference in neutral penetration between H and D leads only to minor changes in the upstream density profiles and with trends opposite to experimental observations. This implies that neutral penetration has a minor role in setting the difference between H and D pedestals, but higher ELM and/or inter-ELM transport are likely to be the main players. The interpretative EDGE2D-EIRENE simulations, with simultaneous upstream and outer divertor target profile constraints, have indicated higher separatrix electron temperature in H than in D for a pair of discharges at low fueling gas rate and similar stored energy (which required higher input power in H than in D at the same gas rate). The isotope dependence of linear MHD pedestal stability has been found to be small, but if a higher separatrix temperature is considered in H than in D, this could lead to destabilization of peeling-ballooning modes and shrinking of the stability boundary, qualitatively consistent with the reduced pedestal confinement in H. - Isotope removal experiment in JET-ILW in view of T-removal after the 2nd DT campaign at JET
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2022-04) Wauters, T.; Matveev, D.; Douai, D.; Banks, J.; Buckingham, R.; Carvalho, I. S.; De La Cal, E.; Delabie, E.; Dittmar, T.; Gaspar, J.; Huber, A.; Jepu, I.; Karhunen, J.; Knipe, S.; Maslov, M.; Meigs, A.; Monakhov, I.; Neverov, V. S.; Noble, C.; Papadopoulos, G.; Pawelec, E.; Romanelli, S.; Shaw, A.; Sheikh, H.; Silburn, S.; Widdowson, A.; Abreu, P.; Aleiferis, S.; Bernardo, J.; Borodin, D.; Brezinsek, S.; Buermans, J.; Card, P.; Carvalho, P.; Crombe, K.; Dalley, S.; Dittrich, L.; Elsmore, C.; Groth, M.; Hacquin, S.; Henriques, R.; Huber, V.; Jacquet, P.; Jiang, X.; Jones, G.; Keeling, D.; Kinna, D.; Kumpulainen, H.; Siren, P.; Varje, J.; , JET ContributorsA sequence of fuel recovery methods was tested in JET, equipped with the ITER-like beryllium main chamber wall and tungsten divertor, to reduce the plasma deuterium concentration to less than 1% in preparation for operation with tritium. This was also a key activity with regard to refining the clean-up strategy to be implemented at the end of the 2nd DT campaign in JET (DTE2) and to assess the tools that are envisaged to mitigate the tritium inventory build-up in ITER. The sequence began with 4 days of main chamber baking at 320 °C, followed by a further 4 days in which Ion Cyclotron Wall Conditioning (ICWC) and Glow Discharge Conditioning (GDC) were applied with hydrogen fuelling, still at 320 °C, followed by more ICWC while the vessel cooled gradually from 320 °C to 225 °C on the 4th day. While baking alone is very efficient at recovering fuel from the main chamber, the ICWC and GDC sessions at 320 °C still removed slightly higher amounts of fuel than found previously in isotopic changeover experiments at 200 °C in JET. Finally, GDC and ICWC are found to have similar removal efficiency per unit of discharge energy. The baking week with ICWC and GDC was followed by plasma discharges to remove deposited fuel from the divertor. Raising the inner divertor strike point up to the uppermost accessible point allowed local heating of the surfaces to at least 800 °C for the duration of this discharge configuration (typically 18 s), according to infra-red thermography measurements. In laboratory thermal desorption measurements, maintaining this temperature level for several minutes depletes thick co-deposit samples of fuel. The fuel removal by 14 diverted plasma discharges is analysed, of which 9, for 160 s in total, with raised inner strike point. The initial D content in these discharges started at the low value of 3%-5%, due to the preceding baking and conditioning sequence, and reduced further to 1%, depending on the applied configuration, thus meeting the experimental target. - Overview of fast particle experiments in the first MAST Upgrade experimental campaigns
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2024-08) Rivero-Rodríguez, J.; McClements, K.; Fitzgerald, M.; Sharapov, S. E.; Cecconello, M.; Crocker, N. A.; Dolby, I.; Dreval, M.; Fil, N.; Galdón-Quiroga, J.; García-Muñoz, M.; Blackmore, S.; Heidbrink, W.; Henderson, S.; Jackson, A.; Kappatou, A.; Keeling, D.; Liu, D.; Liu, Y. Q.; Michael, C.; Oliver, H. J.C.; Ollus, P.; Parr, E.; Prechel, G.; Rhodes, T.; Ryan, D.; Shi, P.; Vallar, M.; Velarde, L.; Williams, T.; Wong, H.; , EUROfusion Tokamak Exploitation Team; , MAST-U teamMAST-U is equipped with on-axis and off-axis neutral beam injectors (NBI), and these external sources of super-Alfvénic deuterium fast-ions provide opportunities for studying a wide range of phenomena relevant to the physics of alpha-particles in burning plasmas. The MeV range D-D fusion product ions are also produced but are not confined. Simulations with the ASCOT code show that up to 20% of fast ions produced by NBI can be lost due to charge exchange (CX) with edge neutrals. Dedicated experiments employing low field side (LFS) gas fuelling show a significant drop in the measured neutron fluxes resulting from beam-plasma reactions, providing additional evidence of CX-induced fast-ion losses, similar to the ASCOT findings. Clear evidence of fast-ion redistribution and loss due to sawteeth (ST), fishbones (FB), long-lived modes (LLM), Toroidal Alfvén Eigenmodes (TAE), Edge Localised Modes (ELM) and neoclassical tearing modes (NTM) has been found in measurements with a Neutron Camera (NCU), a scintillator-based Fast-Ion Loss Detector (FILD), a Solid-State Neutral Particle Analyser (SSNPA) and a Fast-Ion Deuterium-α (FIDA) spectrometer. Unprecedented FILD measurements in the range of 1-2 MHz indicate that fast-ion losses can be also induced by the beam ion cyclotron resonance interaction with compressional or global Alfvén eigenmodes (CAEs or GAEs). These results show the wide variety of scenarios and the unique conditions in which fast ions can be studied in MAST-U, under conditions that are relevant for future devices like STEP or ITER. - Physics and applications of three-ion ICRF scenarios for fusion research
A2 Katsausartikkeli tieteellisessä aikakauslehdessä(2021-02-01) Kazakov, Ye O.; Ongena, J.; Wright, J. C.; Wukitch, S. J.; Bobkov, V.; Garcia, J.; Kiptily, V. G.; Mantsinen, M. J.; Nocente, M.; Schneider, M.; Weisen, H.; Baranov, Y.; Baruzzo, M.; Bilato, R.; Chomiczewska, A.; Coelho, R.; Craciunescu, T.; Crombé, K.; Dreval, M.; Dumont, R.; Dumortier, P.; Durodié, F.; Eriksson, Jakob; Fitzgerald, M.; Galdon-Quiroga, J.; Gallart, D.; Garcia-Muñoz, M.; Giacomelli, L.; Giroud, C.; Gonzalez-Martin, J.; Hakola, Antti; Jacquet, P.; Johnson, T.; Kappatou, A.; Keeling, D.; King, D.; Kirov, K. K.; Lamalle, P.; Lennholm, M.; Lerche, E.; Maslov, M.; Mazzi, S.; Menmuir, S.; Monakhov, I.; Nabais, F.; Nave, M. F.F.; Ochoukov, R.; Polevoi, A. R.; Pinches, S. D.; Plank, U.; Rigamonti, D.; Salewski, M.; Schneider, P. A.; Sharapov, S. E.; Štancar; Thorman, A.; Valcarcel, D.; Van Eester, D.; Van Schoor, M.; Varje, J.; Weiland, M.; Wendler, N.This paper summarizes the physical principles behind the novel three-ion scenarios using radio frequency waves in the ion cyclotron range of frequencies (ICRF). We discuss how to transform mode conversion electron heating into a new flexible ICRF technique for ion cyclotron heating and fast-ion generation in multi-ion species plasmas. The theoretical section provides practical recipes for selecting the plasma composition to realize three-ion ICRF scenarios, including two equivalent possibilities for the choice of resonant absorbers that have been identified. The theoretical findings have been convincingly confirmed by the proof-of-principle experiments in mixed H-D plasmas on the Alcator C-Mod and JET tokamaks, using thermal 3He and fast D ions from neutral beam injection as resonant absorbers. Since 2018, significant progress has been made on the ASDEX Upgrade and JET tokamaks in H-4He and H-D plasmas, guided by the ITER needs. Furthermore, the scenario was also successfully applied in JET D-3He plasmas as a technique to generate fusion-born alpha particles and study effects of fast ions on plasma confinement under ITER-relevant plasma heating conditions. Tuned for the central deposition of ICRF power in a small region in the plasma core of large devices such as JET, three-ion ICRF scenarios are efficient in generating large populations of passing fast ions and modifying the q-profile. Recent experimental and modeling developments have expanded the use of three-ion scenarios from dedicated ICRF studies to a flexible tool with a broad range of different applications in fusion research. - Plasma preparation for [alpha]particle excitation of TAEs in JET DT plasmas
Abstract(2017-01-01) Mailloux, J.; Dumont, R.; Aslanyan, V.; Baruzzo, M.; Challis, C. D.; Coffey, I.; Czarnecka, A.; Delabie, E.; Eriksson, J.; Ferreira, J.; Fitzgerald, M.; Giacomelli, L.; Giroud, C.; Hawkes, N.; Jacquet, P.; Joffrin, E.; Johnson, T.; Keeling, D.; King, D.; Kiptily, V.; Lomanowski, B.; Lerche, E.; Mantsinen, M.; Menmuir, S.; McClements, K.; Moradi, S.; Nocente, M.; Patel, A.; Patten, H.; Puglia, P.; Scannell, R.; Sharapov, S.; Solano, E.; Tsalas, M.; Vallejos, P.; Weisen, H. - Simulating the impact of charge exchange on beam ions in MAST-U
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2022-02-01) Ollus, Patrik; Akers, R.J.; Colling, B.; El-Haroun, H.; Keeling, D.; Kurki-Suonio, Taina; Sharma, R.; Snicker, Antti; Varje, Jari; , MAST-U team; , EUROfusion MST1 TeamA model for simulating charge exchange (CX) of fast ions with background atoms in magnetically confined fusion plasmas has been implemented in the ASCOT orbit-following code. The model was verified by comparing simulated reaction mean free paths to analytical values across a range of fusion-relevant parameters. ASCOT was used to simulate beam ions slowing down in the presence of CX reactions in a MAST-U target scenario. ASCOT predicts the CX-induced loss of beam power to be 22%, which agrees to within 15% with the TRANSP prediction. Due to CX, plasma heating and current drive by beam ions are strongly reduced towards the edge. However, an overall lower but noticeable increase of up to 20% in current drive is predicted closer to the core. The simulated deposition of fast CX atoms on the wall is concentrated around the outer midplane, with estimated peak power loads of 70-80 kW m-2 on the central poloidal field coils (P5) and the vacuum vessel wall between them. This analysis demonstrates that ASCOT can be used to simulate fast ions in fusion plasmas where CX reactions play a significant role, e.g. in spherical tokamaks and stellarators.