Browsing by Author "Kaski, S."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
- Accounting for stellar activity signals in radial-velocity data by using change point detection techniques star
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2022-08-23) Simola, U.; Bonfanti, A.; Dumusque, X.; Cisewski-Kehe, J.; Kaski, S.; Corander, J.Context. Active regions on the photosphere of a star have been the major obstacle for detecting Earth-like exoplanets using the radial velocity (RV) method. A commonly employed solution for addressing stellar activity is to assume a linear relationship between the RV observations and the activity indicators along the entire time series, and then remove the estimated contribution of activity from the variation in RV data (overall correction method). However, since active regions evolve on the photosphere over time, correlations between the RV observations and the activity indicators will correspondingly be anisotropic. Aims. We present an approach that recognizes the RV locations where the correlations between the RV and the activity indicators significantly change in order to better account for variations in RV caused by stellar activity. Methods. The proposed approach uses a general family of statistical breakpoint methods, often referred to as change point detection (CPD) algorithms; several implementations of which are available in R and python. A thorough comparison is made between the breakpoint-based approach and the overall correction method. To ensure wide representativity, we use measurements from real stars that have different levels of stellar activity and whose spectra have different signal-to-noise ratios. Results. When the corrections for stellar activity are applied separately to each temporal segment identified by the breakpoint method, the corresponding residuals in the RV time series are typically much smaller than those obtained by the overall correction method. Consequently, the generalized Lomb-Scargle periodogram contains a smaller number of peaks caused by active regions. The CPD algorithm is particularly effective when focusing on active stars with long time series, such as alpha Cen B. In that case, we demonstrate that the breakpoint method improves the detection limit of exoplanets by 74% on average with respect to the overall correction method. Conclusions. CPD algorithms provide a useful statistical framework for estimating the presence of change points in a time series. Since the process underlying the RV measurements generates anisotropic data by its intrinsic properties, it is natural to use CPD to obtain cleaner signals from RV data. We anticipate that the improved exoplanet detection limit may lead to a widespread adoption of such an approach. Our test on the HD 192310 planetary system is encouraging, as we confirm the presence of the two hosted exoplanets and we determine orbital parameters consistent with the literature, also providing much more precise estimates for HD 192310 c. - The influence of inter-regional delays in generating large-scale brain networks of phase synchronization
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2023-10-01) Williams, N.; Ojanperä, A.; Siebenhühner, F.; Toselli, B.; Palva, S.; Arnulfo, G.; Kaski, S.; Palva, J. M.Large-scale networks of phase synchronization are considered to regulate the communication between brain regions fundamental to cognitive function, but the mapping to their structural substrates, i.e., the structure-function relationship, remains poorly understood. Biophysical Network Models (BNMs) have demonstrated the influences of local oscillatory activity and inter-regional anatomical connections in generating alpha-band (8–12 Hz) networks of phase synchronization observed with Electroencephalography (EEG) and Magnetoencephalography (MEG). Yet, the influence of inter-regional conduction delays remains unknown. In this study, we compared a BNM with standard “distance-dependent delays”, which assumes constant conduction velocity, to BNMs with delays specified by two alternative methods accounting for spatially varying conduction velocities, “isochronous delays” and “mixed delays”. We followed the Approximate Bayesian Computation (ABC) workflow, i) specifying neurophysiologically informed prior distributions of BNM parameters, ii) verifying the suitability of the prior distributions with Prior Predictive Checks, iii) fitting each of the three BNMs to alpha-band MEG resting-state data (N = 75) with Bayesian optimization for Likelihood-Free Inference (BOLFI), and iv) choosing between the fitted BNMs with ABC model comparison on a separate MEG dataset (N = 30). Prior Predictive Checks revealed the range of dynamics generated by each of the BNMs to encompass those seen in the MEG data, suggesting the suitability of the prior distributions. Fitting the models to MEG data yielded reliable posterior distributions of the parameters of each of the BNMs. Finally, model comparison revealed the BNM with “distance-dependent delays”, as the most probable to describe the generation of alpha-band networks of phase synchronization seen in MEG. These findings suggest that distance-dependent delays might contribute to the neocortical architecture of human alpha-band networks of phase synchronization. Hence, our study illuminates the role of inter-regional delays in generating the large-scale networks of phase synchronization that might subserve the communication between regions vital to cognition.