Browsing by Author "Husfeldt, Thore"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
- Counting Connected Subgraphs with Maximum-Degree-Aware Sieving
A4 Artikkeli konferenssijulkaisussa(2018) Björklund, Andreas; Husfeldt, Thore; Kaski, Petteri; Koivisto, MikkoWe study the problem of counting the isomorphic occurrences of a k-vertex pattern graph P as a subgraph in an n-vertex host graph G. Our specific interest is on algorithms for subgraph counting that are sensitive to the maximum degree Delta of the host graph. Assuming that the pattern graph P is connected and admits a vertex balancer of size b, we present an algorithm that counts the occurrences of P in G in O ((2 Delta-2)^{(k+b)/2} 2^{-b} n/(Delta) k^2 log n) time. We define a balancer as a vertex separator of P that can be represented as an intersection of two equal-size vertex subsets, the union of which is the vertex set of P, and both of which induce connected subgraphs of P. A corollary of our main result is that we can count the number of k-vertex paths in an n-vertex graph in O((2 Delta-2)^{floor[k/2]} n k^2 log n) time, which for all moderately dense graphs with Delta <= n^{1/3} improves on the recent breakthrough work of Curticapean, Dell, and Marx [STOC 2017], who show how to count the isomorphic occurrences of a q-edge pattern graph as a subgraph in an n-vertex host graph in time O(q^q n^{0.17q}) for all large enough q. Another recent result of Brand, Dell, and Husfeldt [STOC 2018] shows that k-vertex paths in a bounded-degree graph can be approximately counted in O(4^kn) time. Our result shows that the exact count can be recovered at least as fast for Delta<10. Our algorithm is based on the principle of inclusion and exclusion, and can be viewed as a sparsity-sensitive version of the "counting in halves"-approach explored by Björklund, Husfeldt, Kaski, and Koivisto [ESA 2009]. - The first Parameterized Algorithms and Computational Experiments challenge
A4 Artikkeli konferenssijulkaisussa(2017-02-01) Dell, Holger; Husfeldt, Thore; Jansen, Bart M.P.; Kaski, Petteri; Komusiewicz, Christian; Rosamond, Frances A.In this article, the steering committee of the Parameterized Algorithms and Computational Experiments challenge (PACE) reports on the first iteration of the challenge. Where did PACE come from, how did it go, who won, and what's next? - Narrow sieves for parameterized paths and packings
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2017) Björklund, Andreas; Husfeldt, Thore; Kaski, Petteri; Koivisto, MikkoWe present parameterized algorithms for the k-path problem, the p-packing of q-sets problem, and the q-dimensional p-matching problem. Our algorithms solve these problems with high probability in time exponential only in the parameter (k, p, q) and using polynomial space. The constant bases of the exponentials are significantly smaller than in previous works; for example, for the k-path problem the improvement is from 2 to 1.66. We also show how to detect if a d-regular graph admits an edge coloring with d colors in time within a polynomial factor of 2(d-1)n/2. Our techniques generalize an algebraic approach studied in various recent works. - The shortest even cycle problem is tractable
A4 Artikkeli konferenssijulkaisussa(2022-09-06) Björklund, Andreas; Husfeldt, Thore; Kaski, PetteriGiven a directed graph as input, we show how to efficiently find a shortest (directed, simple) cycle on an even number of vertices. As far as we know, no polynomial-time algorithm was previously known for this problem. In fact, finding any even cycle in a directed graph in polynomial time was open for more than two decades until Robertson, Seymour, and Thomas (Ann. of Math. (2) 1999) and, independently, McCuaig (Electron. J. Combin. 2004; announced jointly at STOC 1997) gave an efficiently testable structural characterisation of even-cycle-free directed graphs. Methodologically, our algorithm relies on the standard framework of algebraic fingerprinting and randomized polynomial identity testing over a finite field, and in fact relies on a generating polynomial implicit in a paper of Vazirani and Yannakakis (Discrete Appl. Math. 1989) that enumerates weighted cycle covers by the parity of their number of cycles as a difference of a permanent and a determinant polynomial. The need to work with the permanent-known to be #P-hard apart from a very restricted choice of coefficient rings (Valiant, Theoret. Comput. Sci. 1979)-is where our main technical contribution occurs. We design a family of finite commutative rings of characteristic 4 that simultaneously (i) give a nondegenerate representation for the generating polynomial identity via the permanent and the determinant, (ii) support efficient permanent computations by extension of Valiant's techniques, and (iii) enable emulation of finite-field arithmetic in characteristic 2. Here our work is foreshadowed by that of Björklund and Husfeldt (SIAM J. Comput. 2019), who used a considerably less efficient commutative ring design-in particular, one lacking finite-field emulation-to obtain a polynomial-time algorithm for the shortest two disjoint paths problem in undirected graphs. Building on work of Gilbert and Tarjan (Numer. Math. 1978) as well as Alon and Yuster (J. ACM 2013), we also show how ideas from the nested dissection technique for solving linear equation systems-introduced by George (SIAM J. Numer. Anal. 1973) for symmetric positive definite real matrices-leads to faster algorithm designs in our present finite-ring randomized context when we have control on the separator structure of the input graph; for example, this happens when the input has bounded genus.