Browsing by Author "Huber, A."
Now showing 1 - 20 of 21
Results Per Page
Sort Options
Item Beryllium global erosion and deposition at JET-ILW simulated with ERO2.0(Elsevier Science Publishers BV, 2019-01-01) Romazanov, J.; Brezinsek, S.; Borodin, D.; Groth, M.; Wiesen, S.; Kirschner, A.; Huber, A.; Widdowson, A.; Airila, M.; Eksaeva, A.; Borodkina, I.; Linsmeier, Ch; , JET Contributors; Department of Applied Physics; Fusion and Plasma Physics; Forschungszentrum Jülich; Culham Centre for Fusion Energy; VTT Technical Research Centre of FinlandThe recently developed Monte-Carlo code ERO2.0 is applied to the modelling of limited and diverted discharges at JET with the ITER-like wall (ILW). The global beryllium (Be) erosion and deposition is simulated and compared to experimental results from passive spectroscopy. For the limiter configuration, it is demonstrated that Be self-sputtering is an important contributor (at least 35%) to the Be erosion. Taking this contribution into account, the ERO2.0 modelling confirms previous evidence that high deuterium (D) surface concentrations of up to ∼ 50% atomic fraction provide a reasonable estimate of Be erosion in plasma-wetted areas. For the divertor configuration, it is shown that drifts can have a high impact on the scrape-off layer plasma flows, which in turn affect global Be transport by entrainment and lead to increased migration into the inner divertor. The modelling of the effective erosion yield for different operational phases (ohmic, L- and H-mode) agrees with experimental values within a factor of two, and confirms that the effective erosion yield decreases with increasing heating power and confinement.Item Characterisation of divertor detachment onset in JET-ILW hydrogen, deuterium, tritium and deuterium–tritium low-confinement mode plasmas(Elsevier Science, 2023-03) Groth, M.; Solokha, V.; Aleiferis, S.; Brezinsek, S.; Brix, M.; Carvalho, I. S.; Carvalho, P.; Corrigan, G.; Harting, D.; Horsten, N.; Jepu, I.; Karhunen, J.; Kirov, K.; Lomanowski, B.; Lawson, K. D.; Lowry, C.; Meigs, A. G.; Menmuir, S.; Pawelec, E.; Pereira, T.; Shaw, A.; Silburn, S.; Thomas, B.; Wiesen, S.; Börner, P.; Borodin, D.; Jachmich, S.; Reiter, D.; Sergienko, G.; Stancar, Z.; Viola, B.; Beaumont, P.; Bernardo, J.; Coffey, I.; Conway, N. J.; de la Luna, E.; Douai, D.; Giroud, C.; Hillesheim, J.; Horvath, L.; Huber, A.; Lomas, P.; Maggi, C. F.; Maslov, M.; Perez von Thun, C.; Scully, S.; Vianello, N.; Wischmeier, M.; , JET Contributors; Department of Applied Physics; Fusion and Plasma Physics; Demokritos National Centre for Scientific Research; Forschungszentrum Jülich; Culham Science Centre; University of Lisbon; Oak Ridge National Laboratory; University of Opole; ITER; Heinrich Heine University Düsseldorf; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; French Alternative Energies and Atomic Energy Commission; Soltan Institute for Nuclear Studies; University of Padova; Max-Planck-Institut für PlasmaphysikMeasurements of the ion currents to and plasma conditions at the low-field side (LFS) divertor target plate in low-confinement mode plasmas in the JET ITER-like wall materials configuration show that the core plasma density required to detach the LFS divertor plasma is independent of the hydrogenic species protium, deuterium and tritium, and a 40 %/60 % deuterium–tritium mixture. This observation applies to a divertor plasma configuration with the LFS strike line connected to the horizontal part of the LFS divertor chosen because of its superior diagnostic coverage. The finding is independent of the operational status of the JET cryogenic pump. The electron temperature (Te) at the LFS strike line was markedly reduced from 25 eV to 5 eV over a narrow range of increasing core plasma density, and observed to be between 2 eV and 3 eV at the onset of detachment. The electron density (ne) peaks across the LFS plasma when Te at the target plate is 1 eV, and spatially moves to the X-point for higher core densities. The density limit was found approximately 20 % higher in protium than in tritium and deuterium–tritium plasmas.Item Comparative H-mode density limit studies in JET and AUG(2017-08-01) Huber, A.; Bernert, M.; Brezinsek, S.; Chankin, A. V.; Sergienko, G.; Huber, V.; Wiesen, S.; Abreu, P.; Beurskens, M. N.A.; Boboc, A.; Brix, M.; Calabrò, G.; Carralero, D.; Delabie, E.; Eich, T.; Esser, H. G.; Groth, M.; Guillemaut, C.; Jachmich, S.; Järvinen, A.; Joffrin, E.; Kallenbach, A.; Kruezi, U.; Lang, P.; Linsmeier, Ch; Lowry, C. G.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Mertens, Ph; Reimold, F.; Schweinzer, J.; Sips, G.; Stamp, M.; Viezzer, E.; Wischmeier, M.; Zohm, H.; , JET Contributors; Department of Applied Physics; Fusion and Plasma Physics; Culham Science Centre; Max Planck Institute for Plasma Physics; Jülich Research Centre; Instituto Superior Técnico Lisboa; Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile; Oak Ridge National Laboratory; Royal Military Academy; French Alternative Energies and Atomic Energy CommissionIdentification of the mechanisms for the H-mode density limit in machines with fully metallic walls, and their scaling to future devices is essential to find for these machines the optimal operational boundaries with the highest attainable density and confinement. Systematic investigations of H-mode density limit plasmas in experiments with deuterium external gas fuelling have been performed on machines with fully metallic walls, JET and AUG and results have been compared with one another. Basically, the operation phases are identical for both tokamaks: the stable H-mode phase, degrading H-mode phase, breakdown of the H-mode with energy confinement deterioration usually accompanied by a dithering cycling phase, followed by the L-mode phase. The observed H-mode density limit on both machines is found close to the Greenwald limit (n/nGW = 0.8–1.1 in the observed magnetic configurations). The similar behavior of the radiation on both tokamaks demonstrates that the density limit (DL) is neither related to additional energy losses from the confined region by radiation, nor to an inward collapse of the hot discharge core induced by overcooling of the plasma periphery by radiation. It was observed on both machines that detachment, as well as the X-point MARFE itself, does not trigger a transition in the confinement regime and thus does not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the transition from H- to L-mode. The measured Greenwald fractions are found to be consistent with the predictions from different theoretical models [16,30] based on MHD instability theory in the near-SOL.Item Determination of tungsten sources in the JET-ILW divertor by spectroscopic imaging in the presence of a strong plasma continuum(Elsevier Science Publishers BV, 2019-01-01) Huber, A.; Brezinsek, S.; Kirschner, A.; Ström, P.; Sergienko, G.; Huber, V.; Borodkina, I.; Douai, D.; Jachmich, S.; Linsmeier, C. H.; Lomanowski, B.; Matthews, G. F.; Mertens, P. H.; , JET Contributors; Department of Applied Physics; Forschungszentrum Jülich; KTH Royal Institute of Technology; French Alternative Energies and Atomic Energy Commission; Royal Military Academy; Culham Science CentreThe identification of the sources of atomic tungsten and the measurement of their radiation distribution in front of all plasma-facing components has been performed in JET with the help of two digital cameras with the same two-dimensional view, equipped with interference filters of different bandwidths centred on the W I (400.88 nm) emission line. A new algorithm for the subtraction of the continuum radiation was successfully developed and is now used to evaluate the W erosion even in the inner divertor region where the strong recombination emission is dominating over the tungsten emission. Analysis of W sputtering and W redistribution in the divertor by video imaging spectroscopy with high spatial resolution for three different magnetic configurations was performed. A strong variation of the emission of the neutral tungsten in toroidal direction and corresponding W erosion has been observed. It correlates strongly with the wetted area with a maximal W erosion at the edge of the divertor tile.Item Effect of reflections on 2D tomographic reconstructions of filtered cameras and on interpreting spectroscopic measurements in the JET ITER-like wall divertor(AMER INST PHYSICS, 2019-10-01) Karhunen, J.; Carr, M.; Harrison, J. R.; Lomanowski, B.; Balboa, I.; Carvalho, P.; Groth, M.; Huber, A.; Matthews, G. F.; Meakins, A.; Silburn, S.; Department of Applied Physics; Fusion and Plasma Physics; JET; University of Lisbon; Forschungszentrum Jülich; Oak Ridge National LaboratoryConsidering reflections from metallic wall surfaces in generation of tomographic reconstructions of the tangentially viewing, visible-range spectroscopic divertor cameras in JET has been observed to yield enhanced spatial accuracy and significant reduction of emission artifacts in experimentally resolved 2D line emission distributions. Neglection of reflections in the tomography process was found to lead to overestimation of the emission near the wall surfaces by up to a factor of 4, as well as to formation of bright emission artifacts between the main emission regions and the wall surfaces, comprising locally up to 50% of the emission. Mimicking divertor spectroscopy measurements by integrating the tomographic reconstructions along vertical lines-of-sight implies that reflections comprise 15%-25% of the observed line-integrated emission peaks. The spatial differences in the reflection contribution between the different lines-of-sight are less pronounced than in the 2D reconstructions due to the dominance of the brightest emission regions through which the spectroscopic lines-of-sight pass. However, postprocessing EDGE2D-EIRENE simulations using the CHERAB code and synthetic spectroscopy suggests a decrease of the spectroscopically inferred divertor electron temperature by up to 75%, when redistribution of the observed light due to reflections is considered.Item The isotope effect on divertor conditions and neutral pumping in horizontal divertor configurations in JET-ILW Ohmic plasmas(2017) Uljanovs, J.; Groth, M.; Järvinen, Aaro; Moulton, D.; Brix, M.; Corrigan, G.; Drewelow, P.; Guillemaut, C.; Harting, D.; Simpson, J.; Huber, A.; Jachmich, S.; Kruezi, U.; Lawson, K. D.; Meigs, A. G.; Sips, A. C C; Stamp, M. F.; Wiesen, S.; Department of Applied Physics; Fusion and Plasma Physics; JET; Max Planck Institute for Plasma Physics; Universidade Lisboa; Forschungszentrum Jülich; Royal Military Academy; EUROfusion Programme Management UnitUnderstanding the impact of isotope mass and divertor configuration on the divertor conditions and neutral pressures is critical for predicting the performance of the ITER divertor in DT operation. To address this need, ohmically heated hydrogen and deuterium plasma experiments were conducted in JET with the ITER-like wall in varying divertor configurations. In this study, these plasmas are simulated with EDGE2D-EIRENE outfitted with a sub-divertor model, to predict the neutral pressures in the plenum with similar fashion to the experiments. EDGE2D-EIRENE predictions show that the increased isotope mass results in up to a 25% increase in peak electron densities and 15% increase in peak ion saturation current at the outer target in deuterium when compared to hydrogen for all horizontal divertor configurations. Indicating that a change from hydrogen to deuterium as main fuel decreases the neutral mean free path, leading to higher neutral density in the divertor. Consequently, this mechanism also leads to higher neutral pressures in the sub-divertor. The experimental data provided by the hydrogen and deuterium ohmic discharges shows that closer proximity of the outer strike point to the pumping plenum results in a higher neutral pressure in the sub-divertor. The diaphragm capacitance gauge pressure measurements show that a two to three-fold increase in sub-divertor pressure was achieved in the corner and nearby horizontal configurations compared to the far-horizontal configurations, likely due to ballistic transport (with respect to the plasma facing components) of the neutrals into the sub-divertor. The corner divertor configuration also indicates that a neutral expansion occurs during detachment, resulting in a sub-divertor neutral density plateau as a function of upstream density at the outer-mid plane.Item Isotope removal experiment in JET-ILW in view of T-removal after the 2nd DT campaign at JET(IOP Publishing Ltd., 2022-04) Wauters, T.; Matveev, D.; Douai, D.; Banks, J.; Buckingham, R.; Carvalho, I. S.; De La Cal, E.; Delabie, E.; Dittmar, T.; Gaspar, J.; Huber, A.; Jepu, I.; Karhunen, J.; Knipe, S.; Maslov, M.; Meigs, A.; Monakhov, I.; Neverov, V. S.; Noble, C.; Papadopoulos, G.; Pawelec, E.; Romanelli, S.; Shaw, A.; Sheikh, H.; Silburn, S.; Widdowson, A.; Abreu, P.; Aleiferis, S.; Bernardo, J.; Borodin, D.; Brezinsek, S.; Buermans, J.; Card, P.; Carvalho, P.; Crombe, K.; Dalley, S.; Dittrich, L.; Elsmore, C.; Groth, M.; Hacquin, S.; Henriques, R.; Huber, V.; Jacquet, P.; Jiang, X.; Jones, G.; Keeling, D.; Kinna, D.; Kumpulainen, H.; Siren, P.; Varje, J.; , JET Contributors; Department of Applied Physics; Fusion and Plasma Physics; Royal Military Academy; Forschungszentrum Jülich; French Alternative Energies and Atomic Energy Commission; Culham Science Centre; Universidade Lisboa; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; Oak Ridge National Laboratory; Aix-Marseille Université; National Institute for Laser, Plasma and Radiation Physics; Russian Research Centre Kurchatov Institute; University of Opole; Demokritos National Centre for Scientific Research; KTH Royal Institute of Technology; University of Helsinki; Complutense University of MadridA sequence of fuel recovery methods was tested in JET, equipped with the ITER-like beryllium main chamber wall and tungsten divertor, to reduce the plasma deuterium concentration to less than 1% in preparation for operation with tritium. This was also a key activity with regard to refining the clean-up strategy to be implemented at the end of the 2nd DT campaign in JET (DTE2) and to assess the tools that are envisaged to mitigate the tritium inventory build-up in ITER. The sequence began with 4 days of main chamber baking at 320 °C, followed by a further 4 days in which Ion Cyclotron Wall Conditioning (ICWC) and Glow Discharge Conditioning (GDC) were applied with hydrogen fuelling, still at 320 °C, followed by more ICWC while the vessel cooled gradually from 320 °C to 225 °C on the 4th day. While baking alone is very efficient at recovering fuel from the main chamber, the ICWC and GDC sessions at 320 °C still removed slightly higher amounts of fuel than found previously in isotopic changeover experiments at 200 °C in JET. Finally, GDC and ICWC are found to have similar removal efficiency per unit of discharge energy. The baking week with ICWC and GDC was followed by plasma discharges to remove deposited fuel from the divertor. Raising the inner divertor strike point up to the uppermost accessible point allowed local heating of the surfaces to at least 800 °C for the duration of this discharge configuration (typically 18 s), according to infra-red thermography measurements. In laboratory thermal desorption measurements, maintaining this temperature level for several minutes depletes thick co-deposit samples of fuel. The fuel removal by 14 diverted plasma discharges is analysed, of which 9, for 160 s in total, with raised inner strike point. The initial D content in these discharges started at the low value of 3%-5%, due to the preceding baking and conditioning sequence, and reduced further to 1%, depending on the applied configuration, thus meeting the experimental target.Item Modeling of plasma facing component erosion, impurity migration, dust transport and melting processes at JET-ILW(Institute of Physics Publishing, 2024-10) Borodkina, I.; Borodin, D. V.; Douai, D.; Romazanov, J.; Pawelec, E.; de la Cal, E.; Kumpulainen, H.; Ratynskaia, S.; Vignitchouk, L.; Tskhakaya, D.; Kirschner, A.; Lazzaro, E.; Uccello, A.; Brezinsek, S.; Dittmar, T.; Groth, M.; Huber, A.; Thoren, E.; Gervasini, G.; Ghezzi, F.; Causa, F.; Widdowson, A.; Lawson, K.; Matveev, D.; Wiesen, S.; Laguardia, L.; , JET Contributors; Department of Applied Physics; Fusion and Plasma Physics; Czech Academy of Sciences; Forschungszentrum Jülich; French Alternative Energies and Atomic Energy Commission; University of Opole; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; KTH Royal Institute of Technology; CNR-ENEA-EURATOM Association; Culham Science Centre; Dutch Institute for Fundamental Energy ResearchAn overview of the modeling approaches, validation methods and recent main results of analysis and modeling activities related to the plasma-surface interaction (PSI) in JET-ILW experiments, including the recent H/D/T campaigns, is presented in this paper. Code applications to JET experiments improve general erosion/migration/retention prediction capabilities as well as various physics extensions, for instance a treatment of dust particles transport and a detailed description of melting and splashing of PFC induced by transient events at JET. 2D plasma edge transport codes like the SOLPS-ITER code as well as PSI codes are key to realistic description of relevant physical processes in power and particle exhaust. Validation of the PSI and edge transport models across JET experiments considering various effects (isotope effects, first wall geometry, including detailed 3D shaping of plasma-facing components, self-sputtering, thermo-forces, physical and chemically assisted physical sputtering formation of W and Be hydrides) is very important for predictive simulations of W and Be erosion and migration in ITER as well as for increasing quantitative credibility of the models. JET also presents a perfect test-bed for the investigation and modeling of melt material dynamics and its splashing and droplet ejection mechanisms. We attribute the second group of processes rather to transient events as for the steady state and, thus, treat those as independent additions outside the interplay with the first group.Item Modelling of tungsten erosion and deposition in the divertor of JET-ILW in comparison to experimental findings(Elsevier BV, 2019-01-01) Kirschner, A.; Brezinsek, S.; Huber, A.; Meigs, A.; Sergienko, G.; Tskhakaya, D.; Borodin, D.; Groth, M.; Jachmich, S.; Romazanov, J.; Wiesen, S.; Linsmeier, Ch; , JET Contributors; Forschungszentrum Jülich; Culham Science Centre; Vienna University of Technology; Fusion and Plasma Physics; Department of Applied PhysicsThe erosion, transport and deposition of tungsten in the outer divertor of JET-ILW has been studied for an H-Mode discharge with low frequency ELMs. For this specific case with an inter-ELM electron temperature at the strike point of about 20 eV, tungsten sputtering between ELMs is almost exclusively due to beryllium impurity and self-sputtering. However, during ELMs tungsten sputtering due to deuterium becomes important and even dominates. The amount of simulated local deposition of tungsten relative to the amount of sputtered tungsten in between ELMs is very high and reaches values of 99% for an electron density of 5E13 cm−3 at the strike point and electron temperatures between 10 and 30 eV. Smaller deposition values are simulated with reduced electron density. The direction of the B-field significantly influences the local deposition and leads to a reduction if the E × B drift directs towards the scrape-off-layer. Also, the thermal force can reduce the tungsten deposition, however, an ion temperature gradient of about 0.1 eV/mm or larger is needed for a significant effect. The tungsten deposition simulated during ELMs reaches values of about 98% assuming ELM parameters according to free-streaming model. The measured WI emission profiles in between and within ELMs have been reproduced by the simulation. The contribution to the overall net tungsten erosion during ELMs is about 5 times larger than the one in between ELMs for the studied case. However, this is due to the rather low electron temperature in between ELMs, which leads to deuterium impact energies below the sputtering threshold for tungsten.Item Observations with fast visible cameras in high power Deuterium plasma experiments in the JET ITER-like wall tokamak(Elsevier Science Publishers BV, 2020-12) Losada, U.; Manzanares, A.; Balboa, I.; Silburn, S.; Karhunen, J.; Carvalho, Pedro J.; Huber, A.; Huber, V.; Solano, Emilia R.; de la Cal, E.; , JET Contributors; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; Culham Science Centre; Department of Applied Physics; Universidade Lisboa; Forschungszentrum JülichHigh speed visible imaging allows to visualize the 2-dimensional dynamics of fast phenomena in the boundary layer of fusion plasmas. Here we describe the two high speed visible cameras currently operating in the JET tokamak, enabling the simultaneous observation of a large fraction of the JET tokamak vacuum vessel with the appropriate configuration for many different plasma phenomena. As an example we discuss recent observations on the spatial and temporal dynamics of visible emission at the outer wall during Edge Localized Modes (ELMs) and the penetration of Shattered Injected Pellet (SPI) into the plasma.Item On the role of finite grid extent in SOLPS-ITER edge plasma simulations for JET H-mode discharges with metallic wall(Elsevier BV, 2018-12-01) Wiesen, S.; Brezinsek, S.; Bonnin, X.; Delabie, E.; Frassinetti, L.; Groth, M.; Guillemaut, C.; Harrison, J.; Harting, D.; Henderson, S.; Huber, A.; Kruezi, U.; Pitts, R. A.; Wischmeier, M.; , JET Contributors; Forschungszentrum Jülich; ITER; Oak Ridge National Laboratory; KTH Royal Institute of Technology; Department of Applied Physics; University of Lisbon; JET; Max-Planck-Institut für PlasmaphysikThe impact of the finite grid size in SOLPS-ITER edge plasma simulations is assessed for JET H-mode discharges with a metal wall. For a semi-horizontal divertor configuration it is shown that the separatrix density is at least 30% higher when a narrow scrape-off layer (SOL) grid width is chosen in SOLPS-ITER compared to the case for which the SOL grid width is maximised. The density increase is caused by kinetic neutrals being not confined inside the divertor region because of the reduced extent of the plasma grid. In this case, an enhanced level of reflections of energetic neutrals at the low-field side (LFS) metal divertor wall is observed. This leads to a shift of the ionisation source further upstream which must be accounted for as a numerical artefact. An overestimate in the cooling at the divertor entrance is observed in this case, identified by a reduced heat flux decay parameters λq div. Otherwise and further upstream the mid-plane heat decay length λq parameter is not affected by any change in divertor dissipation. This confirms the assumptions made for the ITER divertor design studies, i.e. that λq upstream is essentially set by the assumptions for the ratio radial to parallel heat conductivity. It is also shown that even for attached conditions the decay length relations λne > λTe > λq hold in the near-SOL upstream. Thus for interpretative edge plasma simulations one must take the (experimental) value of λne into account, rather than λq, as the former actually defines the required minimum upstream SOL grid extent.Item Overview of ASDEX Upgrade results(2017-10) Aguiam, D.; Aho-Mantila, L.; Angioni, C.; Arden, N.; Parra, R. Arredondo; Asunta, O.; de Baar, M.; Balden, M.; Behler, K.; Bergmann, A.; Bernardo, J.; Bernert, M.; Beurskens, M.; Biancalani, A.; Bilato, R.; Birkenmeier, G.; Bobkov, V.; Bock, A.; Bogomolov, A.; Bolzonella, T.; Boeswirth, B.; Bottereau, C.; Bottino, A.; van den Brand, H.; Brezinsek, S.; Brida, D.; Brochard, F.; Bruhn, C.; Buchanan, J.; Buhler, A.; Burckhart, A.; Cambon-Silva, D.; Camenen, Y.; Carvalho, P.; Carrasco, G.; Cazzaniga, C.; Carr, M.; Carralero, D.; Casali, L.; Castaldo, C.; Cavedon, M.; Challis, C.; Chankin, A.; Chapman, I.; Clairet, F.; Classen, I.; Coda, S.; Coelho, R.; Coenen, J. W.; Colas, L.; Conway, G.; Costea, S.; Coster, D. P.; Croci, G.; Cseh, G.; Czarnecka, A.; D'Arcangelo, O.; Day, C.; Delogu, R.; de Marne, P.; Denk, S.; Denner, P.; Dibon, M.; D'Inca, R.; Di Siena, A.; Douai, D.; Drenik, A.; Drube, R.; Dunne, M.; Duval, B. P.; Dux, R.; Eich, T.; Elgeti, S.; Engelhardt, K.; Erdos, B.; Erofeev, I.; Esposito, B.; Fable, E.; Faitsch, M.; Fantz, U.; Faugel, H.; Felici, F.; Fietz, S.; Figueredo, A.; Fischer, R.; Ford, O.; Frassinetti, L.; Freethy, S.; Froeschle, M.; Fuchert, G.; Fuchs, J. C.; Fuenfgelder, H.; Galazka, K.; Galdon-Quiroga, J.; Gallo, A.; Gao, Y.; Garavaglia, S.; Garcia-Munoz, M.; Geiger, B.; Cianfarani, C.; Giannone, L.; Giovannozzi, E.; Gleason-Gonzalez, C.; Gloeggler, S.; Gobbin, M.; Goerler, T.; Goodman, T.; Gorini, G.; Gradic, D.; Graeter, A.; Granucci, G.; Greuner, H.; Griener, M.; Groth, M.; Gude, A.; Guenter, S.; Guimarais, L.; Haas, G.; Hakola, A. H.; Ham, C.; Happel, T.; Harrison, J.; Hatch, D.; Hauer, V.; Hayward, T.; Heinemann, B.; Heinzel, S.; Hellsten, T.; Henderson, S.; Hennequin, P.; Herrmann, A.; Heyn, E.; Hitzler, F.; Hobirk, J.; Hoelzl, M.; Hoeschen, T.; Holm, J. H.; Hopf, C.; Hoppe, F.; Horvath, L.; Houben, A.; Huber, A.; Igochine, V.; Ilkei, T.; Ivanova-Stanik, I.; Jacob, W.; Jacobsen, A. S.; Jacquot, J.; Janky, F.; Jardin, A.; Jaulmes, F.; Jenko, F.; Jensen, T.; Joffrin, E.; Kaesemann, C.; Kallenbach, A.; Kalvin, S.; Kantor, M.; Kappatou, A.; Kardaun, O.; Karhunen, J.; Kasilov, S.; Kernbichler, W.; Kim, D.; Kimmig, S.; Kirk, A.; Klingshirn, H. -J.; Koch, F.; Kocsis, G.; Koehn, A.; Kraus, M.; Krieger, K.; Krivska, A.; Kraemr-Flecken, A.; Kurki-Suonio, T.; Kurzan, B.; Lackner, K.; Laggner, F.; Lang, P. T.; Lauber, P.; Lazanyi, N.; Lazaros, A.; Lebschy, A.; Li, L.; Li, M.; Liang, Y.; Lipschultz, B.; Liu, Y.; Lohs, A.; Luhmann, N. C.; Lunt, T.; Lyssoivan, A.; Madsen, J.; Maier, H.; Maj, O.; Mailloux, J.; Maljaars, E.; Manas, P.; Mancini, A.; Manhard, A.; Manso, M. -E.; Mantica, P.; Mantsinen, M.; Manz, P.; Maraschek, M.; Martens, C.; Martin, P.; Marrelli, L.; Martitsch, A.; Mastrostefano, S.; Mayer, A.; Mayer, M.; Mazon, D.; McCarthy, P. J.; McDermott, R.; Meisl, G.; Meister, H.; Medvedeva, A.; Merkel, P.; Merkel, R.; Merle, A.; Mertens, V.; Meshcheriakov, D.; Meyer, H.; Meyer, O.; Miettunen, J.; Milanesio, D.; Mink, F.; Mlynek, A.; Monaco, F.; Moon, C.; Nazikian, R.; Nemes-Czopf, A.; Neu, G.; Neu, R.; Nielsen, A. H.; Nielsen, S. K.; Nikolaeva, V.; Nocente, M.; Noterdaeme, J. -M.; Nowak, S.; Oberkofler, M.; Oberparleiter, M.; Ochoukov, R.; Odstrcil, T.; Olsen, J.; Orain, F.; Palermo, F.; Papp, G.; Perez, I. Paradela; Pautasso, G.; Enzel, F.; Petersson, P.; Pinzon, J.; Piovesan, P.; Piron, C.; Plaum, B.; Ploeckl, B.; Plyusnin, V.; Pokol, G.; Poli, E.; Porte, L.; Potzel, S.; Prisiazhniuk, D.; Puetterich, T.; Ramisch, M.; Rapson, C.; Rasmussen, J.; Raupp, G.; Refy, D.; Reich, M.; Reimold, F.; Ribeiro, T.; Riedl, R.; Rittich, D.; Rocchi, G.; Rodriguez-Ramos, M.; Rohde, V.; Ross, A.; Rott, M.; Rubel, M.; Ryan, D.; Ryter, F.; Saarelma, S.; Salewski, M.; Salmi, A.; Sanchis-Sanchez, L.; Santos, G.; Santos, J.; Sauter, O.; Scarabosio, A.; Schall, G.; Schmid, K.; Schmitz, O.; Schneider, P. A.; Schneller, M.; Schrittwieser, R.; Schubert, M.; Schwarz-Selinger, T.; Schweinzer, J.; Scott, B.; Sehmer, T.; Sertoli, M.; Shabbir, A.; Shalpegin, A.; Shao, L.; Sharapov, S.; Siccinio, M.; Sieglin, B.; Sigalov, A.; Silva, A.; Silva, C.; Simon, P.; Simpson, J.; Snicker, A.; Sommariva, C.; Sozzi, C.; Spolaore, M.; Stejner, M.; Stober, J.; Stobbe, F.; Stroth, U.; Strumberger, E.; Suarez, G.; Sugiyama, K.; Sun, H. -J.; Suttrop, W.; Szepesi, T.; Tal, B.; Tala, T.; Tardini, G.; Tardocchi, M.; Terranova, D.; Tierens, W.; Told, D.; Tudisco, O.; Trevisan, G.; Treutterer, W.; Trier, E.; Tripsky, M.; Valisa, M.; Valovic, M.; Vanovac, B.; Varela, P.; Varoutis, S.; Verdoolaege, G.; Vezinet, D.; Vianello, N.; Vicente, J.; Vierle, T.; Viezzer, E.; von Toussaint, U.; Wagner, D.; Wang, N.; Wang, X.; Weidl, M.; Weiland, M.; White, A. E.; Willensdorfer, M.; Wiringer, B.; Wischmeier, M.; Wolf, R.; Wolfrum, E.; Xiang, L.; Yang, Q.; Yang, Z.; Yu, Q.; Zagorski, R.; Zammuto, I.; Zarzoso, D.; Zhang, W.; van Zeeland, M.; Zehetbauer, T.; Zilker, M.; Zoletnik, S.; Zohm, H.; IST; VTT Technical Research Centre of Finland; Max Planck Inst Astrophys, Max Planck Society; Department of Applied Physics; TEC; JET EFDA, Culham Sci Ctr; Technische Universität München; Consorzio RFX; IRFM; Assoc EURATOM FZJ, Euratom, Julich Research Center, Forschungszentrum Julich, Inst Energy & Climate Res; University of Lorraine; ENEA; Istituto Fisica del Plasma "Piero Caldirola" (IFP-CNR); Swiss Federal Institute of Technology Lausanne; Innsbruck Medical University; Hungarian Academy of Sciences; Institute of Plasma Physics & Laser Microfusion (IFPiLM); Karlsruhe Institute of Technology; Eindhoven University of Technology; Swedish Research Council (VR); General Atomics & Affiliated Companies; University of Sevilla; University of Texas at Austin; Max Planck Comp & Data Facil; Ecole Polytechnique; Hochschule der Medien; Technical University of Denmark; Budapest University of Technology and Economics; University of California at Santa Barbara; School services, SCI; LPP-ERM/KMS EURATOM Association; Vienna University of Technology; Assoc EURATOM Hellen Republ, NCSR Demokritos; IPP; York University; CCFE Fusion Assoc; BSC; Univ Coll Cork UCC; Princeton University; Ghent University; Chinese Acad Sci, Chinese Academy of Sciences, Natl Astron Observ; Department of Radio Science and Engineering; Massachusetts Institute of Technology; Chinese Academy of Sciences; Univ Aix Marseille 1, Centre National de la Recherche Scientifique (CNRS), University of Aix-Marseille, Universite de Provence - Aix-Marseille I, UMR 6098, CNRSThe ASDEX Upgrade (AUG) programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. Since 2015, AUG is equipped with a new pair of 3-strap ICRF antennas, which were designed for a reduction of tungsten release during ICRF operation. As predicted, a factor two reduction on the ICRF-induced W plasma content could be achieved by the reduction of the sheath voltage at the antenna limiters via the compensation of the image currents of the central and side straps in the antenna frame. There are two main operational scenario lines in AUG. Experiments with low collisionality, which comprise current drive, ELM mitigation/suppression and fast ion physics, are mainly done with freshly boronized walls to reduce the tungsten influx at these high edge temperature conditions. Full ELM suppression and non-inductive operation up to a plasma current of I-p = 0.8 MA could be obtained at low plasma density. Plasma exhaust is studied under conditions of high neutral divertor pressure and separatrix electron density, where a fresh boronization is not required. Substantial progress could be achieved for the understanding of the confinement degradation by strong D puffing and the improvement with nitrogen or carbon seeding. Inward/outward shifts of the electron density profile relative to the temperature profile effect the edge stability via the pressure profile changes and lead to improved/decreased pedestal performance. Seeding and D gas puffing are found to effect the core fueling via changes in a region of high density on the high field side (HFSHD). The integration of all above mentioned operational scenarios will be feasible and naturally obtained in a large device where the edge is more opaque for neutrals and higher plasma temperatures provide a lower collisionality. The combination of exhaust control with pellet fueling has been successfully demonstrated. High divertor enrichment values of nitrogen E-N >= 10 have been obtained during pellet injection, which is a prerequisite for the simultaneous achievement of good core plasma purity and high divertor radiation levels. Impurity accumulation observed in the all-metal AUG device caused by the strong neoclassical inward transport of tungsten in the pedestal is expected to be relieved by the higher neoclassical temperature screening in larger devices.Item Overview of physics studies on ASDEX Upgrade(IOP PUBLISHING LTD, 2019-07-22) Meyer, H.; Angioni, C.; Albert, C. G.; Arden, Nils; Arredondo Parra, R.; Asunta, O.; De Baar, M.; Balden, M.; Bandaru, V.; Behler, K.; Bergmann, A.; Bernardo, J.; Bernert, M.; Biancalani, A.; Bilato, R.; Birkenmeier, G.; Blanken, T. C.; Bobkov, V.; Bock, A.; Bolzonella, T.; Bortolon, A.; Böswirth, B.; Bottereau, C.; Bottino, A.; Van Den Brand, H.; Brezinsek, S.; Brida, D.; Brochard, F.; Bruhn, C.; Buchanan, J.; Buhler, A.; Burckhart, A.; Camenen, Y.; Carlton, D.; Carr, M.; Carralero, D.; Castaldo, C.; Cavedon, M.; Cazzaniga, C.; Ceccuzzi, S.; Challis, C.; Chankin, A.; Chapman, S.; Cianfarani, C.; Clairet, F.; Coda, S.; Coelho, R.; Coenen, J. W.; Colas, L.; Conway, G. D.; Costea, S.; Coster, D. P.; Cote, T. B.; Creely, A.; Croci, G.; Cseh, G.; Czarnecka, A.; Cziegler, I.; D'Arcangelo, O.; David, P.; Day, C.; Delogu, R.; De Marné, P.; Denk, S. S.; Denner, P.; Dibon, M.; Di Siena, A.; Douai, D.; Drenik, A.; Drube, R.; Dunne, M.; Duval, B. P.; Dux, R.; Eich, T.; Elgeti, S.; Engelhardt, K.; Erdös, B.; Erofeev, I.; Esposito, B.; Fable, E.; Faitsch, M.; Fantz, U.; Faugel, H.; Faust, I.; Felici, F.; Ferreira, J.; Fietz, S.; Figuereido, A.; Fischer, R.; Ford, O.; Frassinetti, L.; Freethy, S.; Fröschle, M.; Fuchert, G.; Fuchs, J. C.; Fünfgelder, H.; Galazka, K.; Galdon-Quiroga, J.; Gallo, A.; Gao, Y.; Garavaglia, S.; Garcia-Carrasco, A.; Garcia-Munoz, M.; Geiger, B.; Giannone, L.; Gil, L.; Giovannozzi, E.; Gleason-González, C.; Glöggler, S.; Gobbin, M.; Görler, T.; Gomez Ortiz, I.; Gonzalez Martin, J.; Goodman, T.; Gorini, G.; Gradic, D.; Grater, A.; Granucci, G.; Greuner, H.; Griener, M.; Groth, M.; Gude, A.; Günter, Sibylle; Guimarais, L.; Haas, G.; Hakola, A. H.; Ham, C.; Happel, T.; Den Harder, N.; Harrer, G. F.; Harrison, J.; Hauer, V.; Hayward-Schneider, T.; Hegna, C. C.; Heinemann, B.; Heinzel, S.; Hellsten, T.; Henderson, S.; Hennequin, P.; Herrmann, A.; Heyn, M. F.; Heyn, E.; Hitzler, F.; Hobirk, J.; Höfler, K.; Hölzl, M.; Höschen, T.; Holm, J. H.; Hopf, C.; Hornsby, W. A.; Horvath, L.; Houben, A.; Huber, A.; Igochine, V.; Ilkei, T.; Ivanova-Stanik, I.; Jacob, W.; Jacobsen, A. S.; Janky, F.; Jansen Van Vuuren, A.; Jardin, A.; Jaulmes, F.; Jenko, F.; Jensen, T.; Joffrin, E.; Kasemann, C. P.; Kallenbach, A.; Kálvin, S.; Kantor, M.; Kappatou, A.; Kardaun, O.; Karhunen, J.; Kasilov, S.; Kazakov, Y.; Kernbichler, W.; Kirk, A.; Kjer Hansen, S.; Klevarova, V.; Kocsis, G.; Köhn, A.; Koubiti, M.; Krieger, K.; Krivska, A.; Kramer-Flecken, A.; Kudlacek, O.; Kurki-Suonio, T.; Kurzan, B.; Labit, B.; Lackner, K.; Laggner, F.; Lang, P. T.; Lauber, P.; Lebschy, A.; Leuthold, N.; Li, M.; Linder, O.; Lipschultz, B.; Liu, Fukun; Liu, Y. Q.; Lohs, A.; Lu, Z.; Luda Di Cortemiglia, T.; Luhmann, N. C.; Lunsford, R.; Lunt, T.; Lyssoivan, A.; Maceina, T.; Madsen, J.; Maggiora, R.; Maier, H.; Maj, O.; Mailloux, J.; Maingi, R.; Maljaars, E.; Manas, P.; Mancini, A.; Manhard, A.; Manso, M. E.; Mantica, P.; Mantsinen, M.; Manz, P.; Maraschek, M.; Martens, C.; Martin, P.; Marrelli, L.; Martitsch, A.; Mayer, M.; Mazon, D.; McCarthy, P. J.; McDermott, R.; Meister, H.; Medvedeva, A.; Merkel, R.; Merle, A.; Mertens, V.; Meshcheriakov, D.; Meyer, O.; Miettunen, J.; Milanesio, D.; Mink, F.; Mlynek, A.; Monaco, F.; Moon, C.; Nabais, F.; Nemes-Czopf, A.; Neu, G.; Neu, R.; Nielsen, A. H.; Nielsen, S. K.; Nikolaeva, V.; Nocente, M.; Noterdaeme, J. M.; Novikau, I.; Nowak, S.; Oberkofler, M.; Oberparleiter, M.; Ochoukov, R.; Odstrcil, T.; Olsen, J.; Orain, F.; Palermo, F.; Pan, O.; Papp, G.; Paradela Perez, I.; Pau, A.; Pautasso, G.; Penzel, F.; Petersson, P.; Pinzón Acosta, J.; Piovesan, P.; Piron, C.; Pitts, R.; Plank, U.; Plaum, B.; Ploeckl, B.; Plyusnin, V.; Pokol, G.; Poli, E.; Porte, L.; Potzel, S.; Prisiazhniuk, D.; Pütterich, T.; Ramisch, M.; Rasmussen, J.; Rattá, G. A.; Ratynskaia, S.; Raupp, G.; Ravera, G. L.; Réfy, D.; Reich, M.; Reimold, F.; Reiser, D.; Ribeiro, T.; Riesch, J.; Riedl, R.; Rittich, D.; Rivero-Rodriguez, J. F.; Rocchi, G.; Rodriguez-Ramos, M.; Rohde, V.; Ross, A.; Rott, M.; Rubel, M.; Ryan, D.; Ryter, F.; Saarelma, S.; Salewski, M.; Salmi, A.; Sanchis-Sanchez, L.; Santos, J.; Sauter, O.; Scarabosio, A.; Schall, G.; Schmid, K.; Schmitz, O.; Schneider, P. A.; Schrittwieser, R.; Schubert, M.; Schwarz-Selinger, T.; Schweinzer, J.; Scott, B.; Sehmer, T.; Seliunin, E.; Sertoli, M.; Shabbir, A.; Shalpegin, A.; Shao, Linming; Sharapov, S.; Sias, G.; Siccinio, M.; Sieglin, B.; Sigalov, A.; Silva, A.; Silva, C.; Silvagni, D.; Simon, P.; Simpson, J.; Smigelskis, E.; Snicker, A.; Sommariva, C.; Sozzi, C.; Spolaore, M.; Stegmeir, A.; Stejner, M.; Stober, J.; Stroth, U.; Strumberger, E.; Suarez, G.; Sun, H. J.; Suttrop, W.; Sytova, E.; Szepesi, T.; Tál, B.; Tala, T.; Tardini, G.; Tardocchi, M.; Teschke, M.; Terranova, D.; Tierens, W.; Thorén, E.; Told, D.; Tolias, P.; Tudisco, O.; Treutterer, W.; Trier, E.; Tripský, M.; Valisa, M.; Valovic, M.; Vanovac, B.; Van Vugt, D.; Varoutis, S.; Verdoolaege, G.; Vianello, N.; Vicente, J.; Vierle, T.; Viezzer, E.; Von Toussaint, U.; Wagner, D.; Wang, N.; Wang, Xianqu; Weiland, M.; White, A. E.; Wiesen, S.; Willensdorfer, M.; Wiringer, B.; Wischmeier, M.; Wolf, R.; Wolfrum, E.; Xiang, L.; Yang, Q.; Yang, Z.; Yu, Q.; Zagórski, R.; Zammuto, I.; Zhang, Wei; Van Zeeland, M.; Zehetbauer, T.; Zilker, M.; Zoletnik, S.; Zohm, H.; Department of Applied Physics; Fusion and Plasma Physics; Culham Science Centre; Max-Planck-Institut für Plasmaphysik; Dutch Institute for Fundamental Energy Research; University of Lisbon; Eindhoven University of Technology; National Research Council of Italy; Princeton University; French Alternative Energies and Atomic Energy Commission; Forschungszentrum Jülich; Université de Lorraine; CNRS; Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile; University of Warwick; Swiss Federal Institute of Technology Lausanne; University of Innsbruck; University of Wisconsin-Madison; Massachusetts Institute of Technology; Hungarian Academy of Sciences; Soltan Institute for Nuclear Studies; University of York; Karlsruhe Institute of Technology; KTH Royal Institute of Technology; University of Seville; University of Milano-Bicocca; Vienna University of Technology; Max-Planck Computing and Data Facility; General Atomics; Université Paris-Saclay; Graz University of Technology; Institut für Grenzflachenverfahrenstechnik und Plasmatechnologie; Danmarks Tekniske Universitet; Budapest University of Technology and Economics; Polish Academy of Sciences; Royal Military Academy; Ghent University; ITER; University of California, Davis; Polytechnic University of Turin; Barcelona Supercomputing Center; University College Cork; Chalmers University of Technology; University of Cagliari; VTT Technical Research Centre of Finland; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; CAS - Institute of Plasma Physics; Max Planck Institute for Plasma PhysicsThe ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.Item Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall(IOP PUBLISHING LTD, 2019-11) Joffrin, E.; Abduallev, S.; Abhangi, M.; Abreu, P.; Afanasev; Afzal, M.; Aggarwal, K. M.; Ahlgren, T.; Aho-Mantila, L.; Aiba, N.; Airila, M.; Alarcon, T.; Albanese, Raffaele; Alegre, D.; Aleiferis, S.; Alessi, E.; Aleynikov, P.; Alkseev, A.; Allinson, M.; Alper, B.; Alves, E.; Ambrosino, G.; Ambrosino, R.; Amosov, V.; Sunden, E. Andersson; Andrews, R.; Angelone, M.; Anghel, M.; Angioni, C.; Appel, L.; Appelbee, C.; Arena, P.; Ariola, M.; Arshad, S.; Artaud, J.; Arter, W.; Ash, A.; Ashikawa, N.; Aslanyan, V.; Asunta, O.; Asztalos, O.; Auriemma, F.; Austin, Y.; Avotina, L.; Axton, M.; Ayres, C.; Baciero, A.; Baiao, D.; Balboa, I.; Balden, M.; Balshaw, N.; Bandaru, V. K.; Banks, J.; Baranov, Y. F.; Barcellona, C.; Barnard, T.; Barnes, M.; Barnsley, R.; Wiechec, A. Baron; Barrera Orte, L.; Baruzzo, M.; Basiuk, V.; Bassan, M.; Bastow, R.; Batista, A.; Batistoni, P.; Baumane, L.; Bauvir, B.; Baylor, L.; Beaumont, P. S.; Beckers, M.; Beckett, B.; Bekris, N.; Beldishevski, M.; Bell, K.; Belli, F.; Belonohy, E.; Benayas, J.; Bergsaker, H.; Bernardo, J.; Bernert, M.; Berry, M.; Bertalot, L.; Besiliu, C.; Betar, H.; Beurskens, M.; Bielecki, J.; Biewer, T.; Bilato, R.; Biletskyi, O.; Bilkova, P.; Binda, F.; Birkenmeier, G.; Bizarro, J. P. S.; Bjorkas, C.; Blackburn, J.; Blackman, T. R.; Blanchard, P.; Blatchford, P.; Bobkov, V.V.; Boboc, A.; Bogar, O.; Bohm, P.; Bohm, T.; Bolshakova, I.; Bolzonella, T.; Bonanomi, N.; Boncagni, L.; Bonfiglio, D.; Bonnin, X.; Boom, J.; Borba, D.; Borodin, D.; Borodkina, I.; Boulbe, C.; Bourdelle, C.; Bowden, M.; Bowman, C.; Boyce, T.; Boyer, H.; Bradnam, S. C.; Braic, V.; Bravanec, R.; Breizman, B.; Brennan, D.; Breton, S.; Brett, A.; Brezinsek, S.; Bright, M.; Brix, M.; Broeckx, W.; Brombin, M.; Broslawski, A.; Brown, B. C.; Brunetti, D.; Bruno, E.; Buch, J.; Buchanan, J.; Buckingham, R.; Buckley, M.; Bucolo, M.; Budny, R.; Bufferand, H.; Buller, S.; Bunting, P.; Buratti, P.; Burckhart, A.; Burroughes, G.; Buscarino, A.; Busse, A.; Butcher, D.; Butler, B.; Bykov, I.; Cahyna, P.; Calabro, G.; Calacci, L.; Callaghan, D.; Callaghan, J.; Calvo, Iván; Camenen, Y.; Camp, P.; Campling, D. C.; Cannas, B.; Capat, A.; Carcangiu, S.; Card, P.; Cardinali, A.; Carman, P.; Carnevale, D.; Carr, M.; Carralero, D.; Carraro, L.; Carvalho, B. B.; Carvalho, Sergio; Carvalho, P.; Carvalho, D. D.; Casson, F. J.; Castaldo, C.; Catarino, N.; Causa, F.; Cavazzana, R.; Cave-Ayland, K.; Cavedon, M.; Cecconello, M.; Ceccuzzi, S.; Cecil, E.; Challis, C. D.; Chandra, D.; Chang, C. S.; Chankin, A.; Chapman, I. T.; Chapman, B.; Chapman, S. C.; Chernyshova, M.; Chiariello, A.; Chitarin, G.; Chmielewski, P.; Chone, L.; Ciraolo, G.; Ciric, D.; Citrin, J.; Clairet, F.; Clark, M.; Clark, E.; Clarkson, R.; Clay, R.; Clements, C.; Coad, J. P.; Coates, P.; Cobalt, A.; Coccorese, V.; Cocilovo, W.; Coelho, R.; Coenen, J. W.; Coffey, I. H.; Colas, L.; Colling, B.; Collins, S.; Conka, D.; Conroy, S.; Conway, N.; Coombs, D.; Cooper, S. R.; Corradino, C.; Corre, Y.; Corrigan, G.; Coster, D.; Craciunescu, T.; Cramp, S.; Crapper, C.; Crisanti, F.; Croci, G.; Croft, D.; Crombe, K.; Cruz, N.; Cseh, G.; Cufar, A.; Cullen, A.; Curson, P.; Curuia, M.; Czarnecka, A.; Czarski, T.; Cziegler, I.; Dabirikhah, H.; Dal Molin, A.; Dalgliesh, P.; Dalley, S.; Dankowski, J.; Darrow, D.; David, P.; Davies, A.; Davis, W.; Dawson, K.; Day, C.; De Bock, M.; de Castro, A.; De Dominici, G.; de la Cal, E.; de la Luna, E.; De Masi, G.; De Temmerman, G.; De Tommasi, G.; de Vries, P.; Deane, J.; Dejarnac, R.; Del Sarto, D.; Delabie, E.; Demerdzhiev; Dempsey, A.; den Harder, N.; Dendy, R. O.; Denis, J.; Denner, P.; Devaux, S.; Devynck, P.; Di Maio, F.; Di Siena, A.; Di Troia, C.; Dickinson, D.; Dinca, P.; Dittmar, T.; Dobrashian, J.; Doerk, H.; Doerner, R. P.; Domptail, F.; Donne, T.; Dorling, S. E.; Douai, D.; Dowson, S.; Drenik, A.; Dreval, M.; Drewelow, P.; Drews, P.; Duckworth, Ph; Dumont, R.; Dumortier, P.; Dunai, D.; Dunne, M.; Duran, I.; Durodie, F.; Dutta, P.; Duval, B. P.; Dux, R.; Dylst, K.; Edappala, P.; Edwards, A. M.; Edwards, J. S.; Eich, Th; Eidietis, N.; Eksaeva, A.; Ellis, R.; Ellwood, G.; Elsmore, C.; Emery, S.; Enachescu, M.; Ericsson, G.; Eriksson, J.; Eriksson, F.; Eriksson, L. G.; Ertmer, S.; Esquembri, S.; Esquisabel, A. L.; Esser, H. G.; Ewart, G.; Fable, E.; Fagan, D.; Faitsch, M.; Falie, D.; Fanni, A.; Farahani, A.; Fasoli, A.; Faugeras, B.; Fazinic, S.; Felici, F.; Felton, R. C.; Feng, S.; Fernades, A.; Fernandes, H.; Ferreira, J.; Ferreira, D. R.; Ferro, G.; Fessey, J. A.; Ficker, O.; Field, A.; Fietz, S.; Figini, L.; Figueiredo, J.; Figueiredo, A.; Fil, N.; Finburg, P.; Fischer, U.; Fittill, L.; Fitzgerald, M.; Flammini, D.; Flanagan, J.; Flinders, K.; Foley, S.; Fonnesu, N.; Fontdecaba, J. M.; Formisano, A.; Forsythe, L.; Fortuna, L.; Fransson, E.; Frasca, M.; Frassinetti, L.; Freisinger, M.; Fresa, R.; Fridstrom, R.; Frigione, D.; Fuchs, JC; Fusco, P.; Futatani, S.; Gal, K.; Galassi, D.; Galazka, K.; Galeani, S.; Gallart, D.; Galvao, R.; Gao, Y.; Garcia, J.; Garcia-Carrasco, A.; Garcia-Munoz, M.; Gardener, M.; Garzotti, L.; Gaspar, J.; Gaudio, P.; Gear, D.; Gebhart, T.; Gee, S.; Geiger, B.; Gelfusa, M.; George, R.; Gerasimov, S.; Gervasini, G.; Gethins, M.; Ghani, Z.; Ghate, M.; Gherendi, M.; Ghezzi, F.; Giacalone, J. C.; Giacomelli, L.; Giacometti, G.; Gibson, K.; Giegerich, T.; Gil, L.; Gilbert, M. R.; Gin, D.; Giovannozzi, E.; Giroud, C.; Gloeggler, S.; Goff, J.; Gohil, P.; Goloborod'ko, V.; Gomes, R.; Goncalves, B.; Goniche, M.; Goodyear, A.; Gorini, G.; Goerler, T.; Goulding, R.; Goussarov, A.; Graham, B.; Graves, J. P.; Greuner, H.; Grierson, B.; Griffiths, J.; Griph, S.; Grist, D.; Groth, M.; Grove, R.; Gruca, M.; Guard, D.; Guerard, C.; Guillemaut, C.; Guirlet, R.; Gulati, S.; Gurl, C.; Gutierrez-Milla, A.; Utoh, H. H.; Hackett, L.; Hacquin, S.; Hager, R.; Hakola, A.; Halitovs, M.; Hall, S.; Hallworth-Cook, S.; Ham, C.; Hamed, M.; Hamilton, N.; Hamlyn-Harris, C.; Hammond, K.; Hancu, G.; Harrison, J.; Harting, D.; Hasenbeck, F.; Hatano, Y.; Hatch, D. R.; Haupt, T.; Hawes, J.; Hawkes, N. C.; Hawkins, J.; Hawkins, P.; Hazel, S.; Heesterman, P.; Heinola, K.; Hellesen, C.; Hellsten, T.; Helou, W.; Hemming, O.; Hender, T. C.; Henderson, S. S.; Henderson, M.; Henriques, R.; Hepple, D.; Herfindal, J.; Hermon, G.; Hidalgo, C.; Higginson, W.; Highcock, E. G.; Hillesheim, J.; Hillis, D.; Hizanidis, K.; Hjalmarsson, A.; Ho, A.; Hobirk, J.; Hogben, C. H. A.; Hogeweij, G. M. D.; Hollingsworth, A.; Hollis, S.; Hoelzl, M.; Honore, J-J; Hook, M.; Hopley, D.; Horacek, J.; Hornung, G.; Horton, A.; Horton, L. D.; Horvath, L.; Hotchin, S. P.; Howell, R.; Hubbard, A.; Huber, A.; Huber, Reto; Huddleston, T. M.; Hughes, M.; Hughes, J.; Huijsmans, G. T. A.; Huynh, P.; Hynes, A.; Igaune, I.; Iglesias, D.; Imazawa, N.; Imrisek, M.; Incelli, M.; Innocente, P.; Ivanova-Stanik, I.; Ivings, E.; Jachmich, S.; Jackson, A.; Jackson, T.; Jacquet, P.; Jansons, J.; Jaulmes, F.; Jednorog, S.; Jenkins, Ian; Jepu, I.; Johnson, T.; Johnson, R.; Johnston, J.; Joita, L.; Joly, J.; Jonasson, E.; Jones, T.; Jones, C.; Jones, L.; Jones, G.; Jones, N.; Juvonen, M.; Hoshino, K. K.; Kallenbach, A.; Kalsey, M.; Kaltiaisenaho, T.; Kamiya, K.; Kaniewski, J.; Kantor, A.; Kappatou, A.; Karhunen, J.; Karkinsky, D.; Kaufman, M.; Kaveney, G.; Kazakov, Y.; Kazantzidis, V.; Keeling, D. L.; Keenan, F. P.; Kempenaars, M.; Kent, O.; Kent, J.; Keogh, K.; Khilkevich, E.; Kim, H. T.; King, R.; King, D.; Kinna, D. J.; Kiptily, V.; Kirk, A.; Kirov, K.; Kirschner, A.; Kizane, G.; Klas, M.; Klepper, C.; Klix, A.; Knight, M.; Knight, P.; Knipe, S.; Knott, S.; Kobuchi, T.; Kochl, F.; Kocsis, G.; Kodeli, I.; Koechl, F.; Kogut, D.; Koivuranta, S.; Kolesnichenko, Y.; Kollo, Z.; Kominis, Y.; Koeppen, M.; Korolczuk, S.; Kos, B.; Koslowski, H. R.; Kotschenreuther, M.; Koubiti, M.; Kovaldins, R.; Kovanda, O.; Kowalska-Strzeciwilk, E.; Krasilnikov, A.; Krasilnikov, AV; Krawczyk, N.; Kresina, M.; Krieger, K.; Krivska, A.; Kruezi, U.; Ksiazek, I.; Kukushkin, A.; Kundu, A.; Kurki-Suonio, T.; Kwak, S.; Kwon, O. J.; Laguardia, L.; Lahtinen, A.; Laing, A.; Lalousis, P.; Lam, N.; Lamb, C.; Lambertz, H. T.; Lang, P. T.; Lanthaler, S.; Neto, E. Lascas; Laszynska, E.; Lawless, R.; Lawson, K. D.; Lazaros, A.; Lazzaro, E.; Leach, R.; Learoyd, G.; Leerink, S.; Lefebvre, X.; Leggate, H. J.; Lehmann, J.; Lehnen, M.; Leichauer, P.; Leichtle, D.; Leipold, F.; Lengar, I.; Lennholm, M.; Lepiavko, B.; Leppanen, J.; Lerche, E.; Lescinskis, A.; Lescinskis, B.; Lesnoj, S.; Leyland, M.; Leysen, W.; Li, Y.; Li, Li; Liang, Y.; Likonen, J.; Linke, J.; Linsmeier, Ch; Lipschultz, B.; Litaudon, X.; Liu, G.; Lloyd, B.; Lo Schiavo, V. P.; Loarer, T.; Loarte, A.; Lomanowski, B.; Lomas, P. J.; Lonnroth, J.; Lopez, J. M.; Lorenzini, R.; Losada, U.; Loughlin, M.; Lowry, C.; Luce, T.; Lucock, R.; Lukin, A.; Luna, C.; Lungaroni, M.; Lungu, C. P.; Lungu, M.; Lunniss, A.; Lunt, T.; Lupelli, I.; Lutsenko, VN; Lyssoivan, A.; Macheta, P.; Macusova, E.; Magesh, B.; Maggi, C.; Maggiora, R.; Mahesan, S.; Maier, H.; Mailloux, J.; Maingi, R.; Makwana, R.; Malaquias, A.; Malinowski, K.; Malizia, A.; Manas, P.; Manduchi, G.; Manso, M. E.; Mantica, P.; Mantsinen, M.; Manzanares, A.; Maquet, Ph; Marandet, Y.; Marcenko, N.; Marchetto, C.; Marchuk, O.; Marconato, N.; Mariani, A.; Marin, M.; Marinelli, M.; Marinucci, M.; Markovic, T.; Marocco, D.; Marot, L.; Marsh, J.; Martin, A.; Martin de Aguilera, A.; Martin-Solis, J. R.; Martone, R.; Martynova, Y.; Maruyama, So; Maslov, M.; Matejcik, S.; Mattei, M.; Matthews, G. F.; Matveev, D.; Matveeva, E.; Mauriya, A.; Maviglia, F.; May-Smith, T.; Mayer, M.; Mayoral, M. L.; Mazon, D.; Mazzotta, C.; McAdams, R.; McCarthy, P. J.; McClements, K. G.; McCormack, O.; McCullen, P. A.; McDonald, D.; McHardy, M.; McKean, R.; McKehon, J.; McNamee, L.; Meadowcroft, C.; Meakins, A.; Medley, S.; Meigh, S.; Meigs, A. G.; Meisl, G.; Meiter, S.; Meitner, S.; Meneses, L.; Menmuir, S.; Mergia, K.; Merle, A.; Merriman, P.; Mertens, Ph; Meshchaninov, S.; Messiaen, A.; Meyer, H.; Michling, R.; Milanesio, D.; Militello, F.; Militello-Asp, E.; Milocco, A.; Miloshevsky, G.; Mink, F.; Minucci, S.; Miron, Luiciana Ines Comes; Mistry, S.; Miyoshi, Y.; Mlynar, J.; Moiseenko; Monaghan, P.; Monakhov, I.; Moon, S.; Mooney, R.; Moradi, S.; Morales, J.; Moran, J.; Mordijck, S.; Moreira, L.; Moro, F.; Morris, J.; Moser, L.; Mosher, S.; Moulton, D.; Mrowetz, T.; Muir, A.; Muraglia, M.; Murari, A.; Muraro, A.; Murphy, S.; Muscat, P.; Muthusonai, N.; Myers, C.; Asakura, N. N.; N'Konga, B.; Nabais, F.; Naish, R.; Naish, J.; Nakano, T.; Napoli, F.; Nardon, E.; Naulin, V.; Nave, M. F. F.; Nedzelskiy; Nemtsev, G.; Nesenevich, V. G.; Nespoli, F.; Neto, A.; Neu, R.; Neverov, V. S.; Newman, M.; Ng, S.; Nicassio, M.; Nielsen, A. H.; Nina, D.; Nishijima, D.; Noble, C.; Nobs, C. R.; Nocente, M.; Nodwell, D.; Nordlund, K.; Nordman, H.; Normanton, R.; Noterdaeme, J. M.; Nowak, S.; Nunes, I.M.; O'Gorman, T.; O'Mullane, M.; Oberkofler, M.; Oberparleiter, M.; Odupitan, T.; Ogawa, M. T.; Okabayashi, M.; Oliver, H.; Olney, R.; Omoregie, L.; Ongena, J.; Orsitto, F.; Orszagh, J.; Osborne, T.; Otin, R.; Owen, A.; Owen, T.; Paccagnella, R.; Packer, L. W.; Pajuste, E.; Pamela, S.; Panja, S.; Papp, P.; Papp, G.; Parail, V; Pardanaud, C.; Diaz, F. Parra; Parsloe, A.; Parsons, N.; Parsons, M.; Pasqualotto, R.; Passeri, M.; Patel, A.; Pathak, S.; Patten, H.; Pau, A.; Pautasso, G.; Pavlichenko, R.; Pavone, A.; Pawelec, E.; Soldan, C. Paz; Peackoc, A.; Pehkonen, S-P; Peluso, E.; Penot, C.; Penzo, J.; Pepperell, K.; Pereira, R.; Cippo, E. Perelli; von Thun, C. Perez; Pericoli, V.; Peruzzo, S.; Peterka, M.; Petersson, P.; Petravich, G.; Petre, A.; Petrzilka, V.; Philipps, V.; Pigatto, L.; Pillon, M.; Pinches, S.; Pintsuk, G.; Piovesan, P.; de Sa, W. Pires; Pires dos Reis, A.; Piron, L.; Piron, C.; Pironti, A.; Pisano, F.; Pitts, R.; Plyusnin, V; Poli, F. M.; Pomaro, N.; Pompilian, O. G.; Pool, P.; Popovichev, S.; Poradzinski, M.; Porfiri, M. T.; Porosnicu, C.; Porton, M.; Possnert, G.; Potzel, S.; Poulipoulis, G.; Powell, T.; Prajapati, Manish; Prakash, R.; Predebon, I.; Prestopino, G.; Price, D.; Price, M.; Price, R.; Primetzhofer, D.; Prior, P.; Pucella, G.; Puglia, P.; Puiatti, M. E.; Purahoo, K.; Pusztai, L.; Puetterich, Th; Rachlew, E.; Rack, M.; Ragona, R.; Rainford, M.; Raj, P.; Rakha, A.; Ramogida, G.; Rapson, C. J.; Rasmussen, D.; Rasmussen, J. J.; Rathod, K.; Ratta, G.; Ratynskaia, S.; Ravera, G.; Rebai, M.; Reed, A.; Refy, D.; Regana, J.; Reich, M.; Reid, N.; Reimold, F.; Reinhart, M.; Reinke, M.; Reiser, D.; Rendell, D.; Reux, C.; Cortes, S. D. A. Reyes; Reynolds, S.; Ricci, D.; Richiusa, M.; Rigamonti, D.; Rimini, F. G.; Risner, J.; Riva, M.; Rivero-Rodriguez, J.; Roach, C.; Robins, R.; Robinson, S.; Robson, D.; Rodionov, R.; Rodrigues, P.; Rodriguez, J.; Rohde, Volker; Romanelli, M.; Romanelli, F.; Romanelli, S.; Romazanov, J.; Rowe, S.; Rubel, M.; Rubinacci, G.; Rubino, G.; Ruchko, L.; Ruset, C.; Rzadkiewicz, J.; Saarelma, S.; Sabot, R.; Saez, X.; Safi, E.; Sahlberg, A.; Saibene, G.; Saleem, M.; Salewski, M.; Salmi, A.; Salmon, R.; Salzedas, F.; Samm, U.; Sandiford, D.; Santa, P.; Santala, M. I. K.; Santos, B.; Santucci, A.; Sartori, F.; Sartori, R.; Sauter, O.; Scannell, R.; Schluck, F.; Schlummer, T.; Schmid, K.; Schmuck, S.; Schoepf, K.; Schweinzer, J.; Schworer, D.; Scott, S. D.; Sergienko, G.; Sertoli, M.; Shabbir, A.; Sharapov, S. E.; Shaw, A.; Sheikh, H.; Shepherd, A.; Shevelev, A.; Shiraki, D.; Shumack, A.; Sias, G.; Sibbald, M.; Sieglin, B.; Silburn, S.; Silva, J.; Silva, A.; Silva, C.; Silvagni, D.; Simmons, P.; Simpson, J.; Sinha, A.; Sipila, S. K.; Sips, A. C. C.; Siren, Paula; Sirinelli, A.; Sjostrand, H.; Skiba, M.; Skilton, R.; Skvara; Slade, B.; Smith, R.; Smith, P.; Smith, S. F.; Snoj, L.; Soare, S.; Solano, E. R.; Somers, A.; Sommariva, C.; Sonato, P.; Sos, M.; Sousa, J.; Sozzi, C.; Spagnolo, S.; Sparapani, P.; Spelzini, T.; Spineanu, F.; Sprada, D.; Sridhar, S.; Stables, G.; Stallard, J.; Stamatelatos, I.; Stamp, M. F.; Stan-Sion, C.; Stancar, Z.; Staniec, P.; Stankunas, G.; Stano, M.; Stavrou, C.; Stefanikova, E.; Stepanov, A.Y.; Stephen, A.; Stephen, M.; Stephens, J.; Stevens, B.; Stober, J.; Stokes, C.; Strachan, J.; Strand, P.; Strauss, H. R.; Strom, P.; Studholme, W.; Subba, F.; Suchkov, E.; Summers, H. P.; Sun, H.; Sutton, N.; Svensson, J.; Sytnykov, D.; Szabolics, T.; Szepesi, G.; Suzuki, T. T.; Tabares, F.; Tadic, T.; Tal, B.; Tala, T.; Taliercio, C.; Tallargio, A.; Tanaka, K.; Tang, W.; Tardocchi, M.; Tatali, R.; Taylor, D.; Tegnered, D.; Telesca, G.; Teplova, N.; Teplukhina, A.; Terranova, D.; Terry, C.; Testa, D.; Tholerus, E.; Thomas, J.; Thompson, V. K.; Thornton, A.; Tierens, W.; Tiseanu, I.; Tojo, H.; Tokitani, M.; Tolias, P.; Tomes, M.; Trimble, P.; Tripsky, M.; Tsalas, M.; Tsavalas, P.; Tskhakaya, D.; Jun, D. Tskhakaya; Turner, A.D.; Turner, M. M.; Turnyanskiy, M.; Tvalashvili, G.; Tyshchenko, M.; Uccello, A.; Uljanovs, J.; Urano, H.; Urban, A.; Urbanczyk, G.; Uytdenhouwen, I.; Vadgama, A.; Valcarcel, D.; Vale, R.; Valentinuzzi, M.; Valerii, K.; Valisa, M.; Olivares, P. Vallejos; Valovic, M.; Van Eester, D.; Van Renterghem, W.; van Rooij, G. J.; Varje, J.; Vartanian, S.; Vasava, K.; Vasilopoulou, T.; Vecsei, M.; Vega, J.; Ventre, S.; Verdoolaege, G.; Verona, C.; Rinati, G. Verona; Veshchev, E.; Vianello, N.; Vicente, J.; Viezzer, E.; Villari, S.; Villone, F.; Vincent, M.; Vincenzi, P.; Vinyar, I.; Viola, B.; Vitins, A.; Vizvary, Z.; Vlad, M.; Voitsekhovitch, I.; Voltolina, D.; von Toussaint, U.; Vondracek, P.; Vuksic, M.; Wakeling, B.; Waldon, C.; Walkden, N.; Walker, R.; Walker, M.; Walsh, M.; Wang, N.; Wang, E.; Warder, S.; Warren, R.; Waterhouse, J.; Watts, C.; Wauters, T.; Webb, M.; Weckmann, A.; Weiland, J.; Weiland, M.; Weisen, H.; Weiszflog, M.; Welch, P.; West, A.; Wheatley, M.; Wheeler, S.; Whitehead, A. M.; Whittaker, D.; Widdowson, A. M.; Wiesen, S.; Wilkie, G.; Williams, J.; Willoughby, D.; Wilson, J.; Wilson, P.; Wilson, H. R.; Wischmeier, M.; Withycombe, A.; Witts, D.; Wolfrum, E.; Wood, R.; Woodley, R.; Woodley, C.; Wray, S.; Wright, J. C.; Wright, P.; Wukitch, S.; Wynn, A.; Xiang, L.; Xu, T.; Xue, Y.; Yadikin, D.; Yakovenko, Y.; Yanling, W.; Yavorskij, Viktor; Young, E.S.K.; Young, R.; Young, D.; Zacks, J.; Zagorski, R.; Zaitsev, F. S.; Zakharov, L.; Zanino, R.; Zarins, A.; Zarins, R.; Fernandez, D. Zarzoso; Zastrow, K. D.; Zerbini, M.; Zhang, W.; Zhou, Y.; Zilli, E.; Zocco, A.; Zoita, V.L.; Zoletnik, S.; Zwingmann, W.; Zychor, I.; Ranjan, Sutapa; Department of Applied Physics; School services, ELEC; Automaatio- ja systeemitekniik; School services,SCI; Fusion and Plasma Physics; French Alternative Energies and Atomic Energy Commission; Forschungszentrum Jülich; Institute for Plasma Research; Universidade de Lisboa; St. Petersburg Scientific Centre; Culham Science Centre; Queen's University Belfast; University of Helsinki; National Institutes for Quantum and Radiological Science and Technology; Consorzio CREATE; EURATOM/CIEMAT; National Centre for Scientific Research "Demokritos"; Consiglio Nazionale delle Ricerche (CNR); ITER; Kurchatov Institute; Troitskii Institute of Innovative and Thermonuclear Research; Uppsala University; ENEA Frascati Research Center; National Institute of Research and Development for Cryogenic and Isotopic Technologies; Max Planck Institute for Plasma Physics; University of Catania; Fusion Energy Joint Undertaking; Massachusetts Institute of Technology; EURATOM HAS; Consorzio RFX; University of Latvia; University of Oxford; EUROfusion Programme Management Unit; Oak Ridge National Laboratory; KTH Royal Institute of Technology; Université de Lorraine; Institute of Nuclear Physics of the Polish Academy of Sciences; National Academy of Sciences of Ukraine; Institute of Plasma Physics of the Czech Academy of Sciences; Swiss Federal Institute of Technology Lausanne; Comenius University Bratislava; University of Wisconsin-Madison; Lviv Polytechnic National University; University of Milano-Bicocca; Université Côte d'Azur; University of York; National Institute for Research and Development in Optoelectronics; Fourth State Research in Austin; University of Texas at Austin; Belgian Nuclear Research Centre; National Centre for Nuclear Research; Princeton University; Chalmers University of Technology; Tuscia University; University of Rome Tor Vergata; Aix-Marseille Université; University of Cagliari; University of Warwick; Institute of Plasma Physics and Laser Microfusion; Dutch Institute for Fundamental Energy Research; National Institute for Laser, Plasma and Radiation Physics; Ghent University; Jožef Stefan Institute; Karlsruhe Institute of Technology; Dublin City University; University of California, San Diego; Ecole Royale Militaire; General Atomics & Affiliated Companies; Horia Hulubei National Institute of Physics and Nuclear Engineering; Universidad Politécnica de Madrid; Ruder Boskovic Institute; Polytechnic University of Catalonia; Barcelona Supercomputing Center; Centro Brasileiro de Pesquisas Físicas; University of Seville; University of Innsbruck; University of Toyama; University of Strathclyde; National Technical University of Athens; European Commission; VTT Technical Research Centre of Finland; University College Cork; Vienna University of Technology; University of Opole; Daegu University; Foundation for Research and Technology - Hellas; PELIN LLC; Arizona State University; Polytechnic University of Turin; ICREA; Complutense University of Madrid; University of Basel; Universidad Carlos III de Madrid; Purdue University; Technical University of Denmark; University of California, Berkeley; Universidade de São Paulo; University of Ioannina; Lithuanian Energy Institute; University of Bath; HRS Fusion; National Institute for Fusion ScienceFor the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.Item Overview of the JET results in support to ITER(2017-06-15) Litaudon, X.; Abduallev, S.; Abhangi, M.; Abreu, P.; Afzal, M.; Aggarwal, K. M.; Ahlgren, T.; Ahn, J. H.; Aho-Mantila, L.; Aiba, N.; Airila, M.; Albanese, R.; Aldred, V.; Alegre, D.; Alessi, E.; Aleynikov, P.; Alfier, A.; Alkseev, A.; Allinson, M.; Alper, B.; Alves, E.; Ambrosino, G.; Ambrosino, R.; Amicucci, L.; Amosov, V.; Andersson Sundén, E.; Angelone, M.; Anghel, M.; Angioni, C.; Appel, L.; Appelbee, C.; Arena, P.; Ariola, M.; Arnichand, H.; Arshad, S.; Ash, A.; Ashikawa, N.; Aslanyan, V.; Asunta, O.; Auriemma, F.; Austin, Y.; Avotina, L.; Axton, M. D.; Ayres, C.; Bacharis, M.; Baciero, A.; Baiáo, D.; Bailey, S.; Baker, A.; Balboa, I.; Balden, M.; Balshaw, N.; Bament, R.; Banks, J. W.; Baranov, Y. F.; Barnard, M. A.; Barnes, D.; Barnes, M.; Barnsley, R.; Baron Wiechec, A.; Barrera Orte, L.; Baruzzo, M.; Basiuk, V.; Bassan, M.; Bastow, R.; Batista, A.; Batistoni, P.; Baughan, R.; Bauvir, B.; Baylor, L.; Bazylev, B.; Beal, J.; Beaumont, P. S.; Beckers, M.; Beckett, B.; Becoulet, A.; Bekris, N.; Beldishevski, M.; Bell, K.; Belli, F.; Bellinger, M.; Belonohy; Ben Ayed, N.; Benterman, N. A.; Bergsåker, H.; Bernardo, J.; Bernert, M.; Berry, M.; Bertalot, L.; Besliu, C.; Beurskens, M.; Bieg, B.; Bielecki, J.; Biewer, T.; Bigi, M.; Bílková, P.; Binda, F.; Bisoffi, A.; Bizarro, J. P.S.; Björkas, C.; Blackburn, J.; Blackman, K.; Blackman, T. R.; Blanchard, P.; Blatchford, P.; Bobkov, V.; Boboc, A.; Bodnár, G.; Bogar, O.; Bolshakova, I.; Bolzonella, T.; Bonanomi, N.; Bonelli, F.; Boom, J.; Booth, J.; Borba, D.; Borodin, D.; Borodkina, I.; Botrugno, A.; Bottereau, C.; Boulting, P.; Bourdelle, C.; Bowden, M.; Bower, C.; Bowman, C.; Boyce, T.; Boyd, C.; Boyer, H. J.; Bradshaw, J. M.A.; Braic, V.; Bravanec, R.; Breizman, B.; Bremond, S.; Brennan, P. D.; Breton, S.; Brett, A.; Brezinsek, S.; Bright, M. D.J.; Brix, M.; Broeckx, W.; Brombin, M.; Brosławski, A.; Brown, D. P.D.; Brown, M.; Bruno, E.; Bucalossi, J.; Buch, J.; Buchanan, J.; Buckley, M. A.; Budny, R.; Bufferand, H.; Bulman, M.; Bulmer, N.; Bunting, P.; Buratti, P.; Burckhart, A.; Buscarino, A.; Busse, A.; Butler, N. K.; Bykov, I.; Byrne, J.; Cahyna, P.; Calabrò, G.; Calvo, I.; Camenen, Y.; Camp, P.; Campling, D. C.; Cane, J.; Cannas, B.; Capel, A. J.; Card, P. J.; Cardinali, A.; Carman, P.; Carr, M.; Carralero, D.; Carraro, L.; Carvalho, B. B.; Carvalho, I.; Carvalho, P.; Casson, F. J.; Castaldo, C.; Catarino, N.; Caumont, J.; Causa, F.; Cavazzana, R.; Cave-Ayland, K.; Cavinato, M.; Cecconello, M.; Ceccuzzi, S.; Cecil, E.; Cenedese, A.; Cesario, R.; Challis, C. D.; Chandler, M.; Chandra, D.; Chang, C. S.; Chankin, A.; Chapman, I. T.; Chapman, S. C.; Chernyshova, M.; Chitarin, G.; Ciraolo, G.; Ciric, D.; Citrin, J.; Clairet, F.; Clark, E.; Clark, M.; Clarkson, R.; Clatworthy, D.; Clements, C.; Cleverly, M.; Coad, J. P.; Coates, P. A.; Cobalt, A.; Coccorese, V.; Cocilovo, V.; Coda, S.; Coelho, R.; Coenen, J. W.; Coffey, I.; Colas, L.; Collins, S.; Conka, D.; Conroy, S.; Conway, N.; Coombs, D.; Cooper, D.; Cooper, S. R.; Corradino, C.; Corre, Y.; Corrigan, G.; Cortes, S.; Coster, D.; Couchman, A. S.; Cox, M. P.; Craciunescu, T.; Cramp, S.; Craven, R.; Crisanti, F.; Croci, G.; Croft, D.; Crombé, K.; Crowe, R.; Cruz, N.; Cseh, G.; Cufar, A.; Cullen, A.; Curuia, M.; Czarnecka, A.; Dabirikhah, H.; Dalgliesh, P.; Dalley, S.; Dankowski, J.; Darrow, D.; Davies, O.; Davis, W.; Day, C.; Day, I. E.; De Bock, M.; De Castro, A.; De La Cal, E.; De La Luna, E.; De Masi, G.; De Pablos, J. L.; De Temmerman, G.; De Tommasi, G.; De Vries, P.; Deakin, K.; Deane, J.; Degli Agostini, F.; Dejarnac, R.; Delabie, E.; Den Harder, N.; Dendy, R. O.; Denis, J.; Denner, P.; Devaux, S.; Devynck, P.; Di Maio, F.; Di Siena, A.; Di Troia, C.; Dinca, P.; D'Inca, R.; Ding, B.; Dittmar, T.; Doerk, H.; Doerner, R. P.; Donné, T.; Dorling, S. E.; Dormido-Canto, S.; Doswon, S.; Douai, D.; Doyle, P. T.; Drenik, A.; Drewelow, P.; Drews, P.; Duckworth, Ph; Dumont, R.; Dumortier, P.; Dunai, D.; Dunne, M.; ĎUran, I.; Durodié, F.; Dutta, P.; Duval, B. P.; Dux, R.; Dylst, K.; Dzysiuk, N.; Edappala, P. V.; Edmond, J.; Edwards, A. M.; Edwards, J.; Eich, Th; Ekedahl, A.; El-Jorf, R.; Elsmore, C. G.; Enachescu, M.; Ericsson, G.; Eriksson, F.; Eriksson, J.; Eriksson, L. G.; Esposito, B.; Esquembri, S.; Esser, H. G.; Esteve, D.; Evans, B.; Evans, G. E.; Evison, G.; Ewart, G. D.; Fagan, D.; Faitsch, M.; Falie, D.; Fanni, A.; Fasoli, A.; Faustin, J. M.; Fawlk, N.; Fazendeiro, L.; Fedorczak, N.; Felton, R. C.; Fenton, K.; Fernades, A.; Fernandes, H.; Ferreira, J.; Fessey, J. A.; Février, O.; Ficker, O.; Field, A.; Fietz, S.; Figueiredo, A.; Figueiredo, J.; Fil, A.; Finburg, P.; Firdaouss, M.; Fischer, U.; Fittill, L.; Fitzgerald, M.; Flammini, D.; Flanagan, J.; Fleming, C.; Flinders, K.; Fonnesu, N.; Fontdecaba, J. M.; Formisano, A.; Forsythe, L.; Fortuna, L.; Fortuna-Zalesna, E.; Fortune, M.; Foster, S.; Franke, T.; Franklin, T.; Frasca, M.; Frassinetti, L.; Freisinger, M.; Fresa, R.; Frigione, D.; Fuchs, V.; Fuller, D.; Futatani, S.; Fyvie, J.; Gál, K.; Galassi, D.; Gałazka, K.; Galdon-Quiroga, J.; Gallagher, J.; Gallart, D.; Galváo, R.; Gao, X.; Gao, Y.; Garcia, J.; Garcia-Carrasco, A.; García-Muñoz, M.; Gardarein, J. L.; Garzotti, L.; Gaudio, P.; Gauthier, E.; Gear, D. F.; Gee, S. J.; Geiger, B.; Gelfusa, M.; Gerasimov, S.; Gervasini, G.; Gethins, M.; Ghani, Z.; Ghate, M.; Gherendi, M.; Giacalone, J. C.; Giacomelli, L.; Gibson, C. S.; Giegerich, T.; Gil, C.; Gil, L.; Gilligan, S.; Gin, D.; Giovannozzi, E.; Girardo, J. B.; Giroud, C.; Giruzzi, G.; Glöggler, S.; Godwin, J.; Goff, J.; Gohil, P.; Goloborod'Ko, V.; Gomes, R.; Goncalves, B.; Goniche, M.; Goodliffe, M.; Goodyear, A.; Gorini, G.; Gosk, M.; Goulding, R.; Goussarov, A.; Gowland, R.; Graham, B.; Graham, M. E.; Graves, J. P.; Grazier, N.; Grazier, P.; Green, N. R.; Greuner, H.; Grierson, B.; Griph, F. S.; Grisolia, C.; Grist, D.; Groth, M.; Grove, R.; Grundy, C. N.; Grzonka, J.; Guard, D.; Guérard, C.; Guillemaut, C.; Guirlet, R.; Gurl, C.; Utoh, H. H.; Hackett, L. J.; Hacquin, S.; Hagar, A.; Hager, R.; Hakola, A.; Halitovs, M.; Hall, S. J.; Hallworth Cook, S. P.; Hamlyn-Harris, C.; Hammond, K.; Harrington, C.; Harrison, J.; Harting, D.; Hasenbeck, F.; Hatano, Y.; Hatch, D. R.; Haupt, T. D.V.; Hawes, J.; Hawkes, N. C.; Hawkins, J.; Hawkins, P.; Haydon, P. W.; Hayter, N.; Hazel, S.; Heesterman, P. J.L.; Heinola, K.; Hellesen, C.; Hellsten, T.; Helou, W.; Hemming, O. N.; Hender, T. C.; Henderson, M.; Henderson, S. S.; Henriques, R.; Hepple, D.; Hermon, G.; Hertout, P.; Hidalgo, C.; Highcock, E. G.; Hill, M.; Hillairet, J.; Hillesheim, J.; Hillis, D.; Hizanidis, K.; Hjalmarsson, A.; Hobirk, J.; Hodille, E.; Hogben, C. H.A.; Hogeweij, G. M.D.; Hollingsworth, A.; Hollis, S.; Homfray, D. A.; Horáček, J.; Hornung, G.; Horton, A. R.; Horton, L. D.; Horvath, L.; Hotchin, S. P.; Hough, M. R.; Howarth, P. J.; Hubbard, A.; Huber, A.; Huber, V.; Huddleston, T. M.; Hughes, M.; Huijsmans, G. T.A.; Hunter, C. L.; Huynh, P.; Hynes, A. M.; Iglesias, D.; Imazawa, N.; Imbeaux, F.; Imríšek, M.; Incelli, M.; Innocente, P.; Irishkin, M.; Ivanova-Stanik, I.; Jachmich, S.; Jacobsen, A. S.; Jacquet, P.; Jansons, J.; Jardin, A.; Järvinen, A.; Jaulmes, F.; Jednoróg, S.; Jenkins, I.; Jeong, C.; Jepu, I.; Joffrin, E.; Johnson, R.; Johnson, Thomas; Johnston, Jane; Joita, L.; Jones, G.; Jones, T. T.C.; Hoshino, K. K.; Kallenbach, A.; Kamiya, K.; Kaniewski, J.; Kantor, A.; Kappatou, A.; Karhunen, J.; Karkinsky, D.; Karnowska, I.; Kaufman, M.; Kaveney, G.; Kazakov, Y.; Kazantzidis, V.; Keeling, D. L.; Keenan, T.; Keep, J.; Kempenaars, M.; Kennedy, C.; Kenny, D.; Kent, J.; Kent, O. N.; Khilkevich, E.; Kim, H. T.; Kim, H. S.; Kinch, A.; King, C.; King, D.; King, R. F.; Kinna, D. J.; Kiptily, V.; Kirk, A.; Kirov, K.; Kirschner, A.; Kizane, G.; Klepper, C.; Klix, A.; Knight, P.; Knipe, S. J.; Knott, S.; Kobuchi, T.; Köchl, F.; Kocsis, G.; Kodeli, I.; Kogan, L.; Kogut, D.; Koivuranta, S.; Kominis, Y.; Köppen, M.; Kos, B.; Koskela, T.; Koslowski, H. R.; Koubiti, M.; Kovari, M.; Kowalska-Strzȩciwilk, E.; Krasilnikov, A.; Krasilnikov, V.; Krawczyk, N.; Kresina, M.; Krieger, K.; Krivska, A.; Kruezi, U.; Ksiażek, I.; Kukushkin, A.; Kundu, A.; Kurki-Suonio, T.; Kwak, S.; Kwiatkowski, R.; Kwon, O. J.; Laguardia, L.; Lahtinen, A.; Laing, A.; Lam, N.; Lambertz, H. T.; Lane, C.; Lang, P. T.; Lanthaler, S.; Lapins, J.; Lasa, A.; Last, J. R.; Łaszyńska, E.; Lawless, R.; Lawson, A.; Lawson, K. D.; Lazaros, A.; Lazzaro, E.; Leddy, J.; Lee, S.; Lefebvre, X.; Leggate, H. J.; Lehmann, J.; Lehnen, M.; Leichtle, D.; Leichuer, P.; Leipold, F.; Lengar, I.; Lennholm, M.; Lerche, E.; Lescinskis, A.; Lesnoj, S.; Letellier, E.; Leyland, M.; Leysen, W.; Li, Li; Liang, Y.; Likonen, J.; Linke, J.; Linsmeier, Ch; Lipschultz, B.; Liu, G.; Liu, Y.; Lo Schiavo, V. P.; Loarer, T.; Loarte, A.; Lobel, R. C.; Lomanowski, B.; Lomas, P. J.; Lönnroth, J.; López, J. M.; López-Razola, J.; Lorenzini, R.; Losada, U.; Lovell, J. J.; Loving, A. B.; Lowry, C.; Luce, T.; Lucock, R. M.A.; Lukin, A.; Luna, C.; Lungaroni, M.; Lungu, C. P.; Lungu, M.; Lunniss, A.; Lupelli, I.; Lyssoivan, A.; Macdonald, N.; Macheta, P.; Maczewa, K.; Magesh, B.; Maget, P.; Maggi, C.; Maier, H.; Mailloux, J.; Makkonen, T.; Makwana, R.; Malaquias, A.; Malizia, A.; Manas, P.; Manning, A.; Manso, M. E.; Mantica, P.; Mantsinen, M.; Manzanares, A.; Maquet, Ph; Marandet, Y.; Marcenko, N.; Marchetto, C.; Marchuk, O.; Marinelli, M.; Marinucci, M.; Markovič, T.; Marocco, D.; Marot, L.; Marren, C. A.; Marshal, R.; Martin, A.; Martin, Y.; Martín De Aguilera, A.; Martínez, F. J.; Martín-Solís, J. R.; Martynova, Y.; Maruyama, So; Masiello, A.; Maslov, M.; Matejcik, S.; Mattei, M.; Matthews, G. F.; Maviglia, F.; Mayer, M.; Mayoral, M. L.; May-Smith, T.; Mazon, D.; Mazzotta, C.; McAdams, R.; McCarthy, P. J.; McClements, K. G.; McCormack, O.; McCullen, P. A.; McDonald, D.; McIntosh, S.; McKean, R.; McKehon, J.; Meadows, R. C.; Meakins, A.; Medina, F.; Medland, M.; Medley, S.; Meigh, S.; Meigs, A. G.; Meisl, G.; Meitner, S.; Meneses, L.; Menmuir, S.; Mergia, K.; Merrigan, I. R.; Mertens, Ph; Meshchaninov, S.; Messiaen, A.; Meyer, H.; Mianowski, S.; Michling, R.; Middleton-Gear, D.; Miettunen, J.; Militello, F.; Militello-Asp, E.; Miloshevsky, G.; Mink, F.; Minucci, S.; Miyoshi, Y.; Mlynář, J.; Molina, D.; Monakhov, I.; Moneti, M.; Mooney, R.; Moradi, S.; Mordijck, S.; Moreira, L.; Moreno, R.; Moro, F.; Morris, A. W.; Morris, J.; Moser, L.; Mosher, S.; Moulton, D.; Murari, A.; Muraro, A.; Murphy, S.; Asakura, N. N.; Na, Y. S.; Nabais, F.; Naish, R.; Nakano, T.; Nardon, E.; Naulin, V.; Nave, M. F.F.; Nedzelski, I.; Nemtsev, G.; Nespoli, F.; Neto, A.; Neu, R.; Neverov, V. S.; Newman, M.; Nicholls, K. J.; Nicolas, T.; Nielsen, A. H.; Nielsen, P.; Nilsson, E.; Nishijima, D.; Noble, C.; Nocente, M.; Nodwell, D.; Nordlund, K.; Nordman, H.; Nouailletas, R.; Nunes, I.; Oberkofler, M.; Odupitan, T.; Ogawa, M. T.; O'Gorman, T.; Okabayashi, M.; Olney, R.; Omolayo, O.; O'Mullane, M.; Ongena, J.; Orsitto, F.; Orszagh, J.; Oswuigwe, B. I.; Otin, R.; Owen, A.; Paccagnella, R.; Pace, N.; Pacella, D.; Packer, L. W.; Page, A.; Pajuste, E.; Palazzo, S.; Pamela, S.; Panja, S.; Papp, P.; Paprok, R.; Parail, V.; Park, M.; Parra Diaz, F.; Parsons, M.; Pasqualotto, R.; Patel, A.; Pathak, S.; Paton, D.; Patten, H.; Pau, A.; Pawelec, E.; Paz Soldan, C.; Peackoc, A.; Pearson, I. J.; Pehkonen, S. P.; Peluso, E.; Penot, C.; Pereira, A.; Pereira, R.; Pereira Puglia, P. P.; Perez Von Thun, C.; Peruzzo, S.; Peschanyi, S.; Peterka, M.; Petersson, P.; Petravich, G.; Petre, A.; Petrella, N.; Petržilka, V.; Peysson, Y.; Pfefferlé, D.; Philipps, V.; Pillon, M.; Pintsuk, G.; Piovesan, P.; Pires Dos Reis, A.; Piron, L.; Pironti, A.; Pisano, F.; Pitts, R.; Pizzo, F.; Plyusnin, V.; Pomaro, N.; Pompilian, O. G.; Pool, P. J.; Popovichev, S.; Porfiri, M. T.; Porosnicu, C.; Porton, M.; Possnert, G.; Potzel, S.; Powell, T.; Pozzi, J.; Prajapati, V.; Prakash, R.; Prestopino, G.; Price, D.; Price, M.; Price, R.; Prior, P.; Proudfoot, R.; Pucella, G.; Puglia, P.; Puiatti, M. E.; Pulley, D.; Purahoo, K.; Pütterich, Th; Rachlew, E.; Rack, M.; Ragona, R.; Rainford, M. S.J.; Rakha, A.; Ramogida, G.; Ranjan, S.; Rapson, C. J.; Rasmussen, J. J.; Rathod, K.; Rattá, G.; Ratynskaia, S.; Ravera, G.; Rayner, C.; Rebai, M.; Reece, D.; Reed, A.; Réfy, D.; Regan, B.; Regaña, J.; Reich, M.; Reid, N.; Reimold, F.; Reinhart, M.; Reinke, M.; Reiser, D.; Rendell, D.; Reux, C.; Reyes Cortes, S. D.A.; Reynolds, S.; Riccardo, V.; Richardson, N.; Riddle, K.; Rigamonti, D.; Rimini, F. G.; Risner, J.; Riva, M.; Roach, C.; Robins, R. J.; Robinson, S. A.; Robinson, T.; Robson, D. W.; Roccella, R.; Rodionov, R.; Rodrigues, P.; Rodriguez, J.; Rohde, V.; Romanelli, F.; Romanelli, M.; Romanelli, S.; Romazanov, J.; Rowe, S.; Rubel, M.; Rubinacci, G.; Rubino, G.; Ruchko, L.; Ruiz, M.; Ruset, C.; Rzadkiewicz, J.; Saarelma, S.; Sabot, R.; Safi, E.; Sagar, P.; Saibene, G.; Saint-Laurent, F.; Salewski, M.; Salmi, A.; Salmon, R.; Salzedas, F.; Samaddar, D.; Samm, U.; Sandiford, D.; Santa, P.; Santala, M. I.K.; Santos, B.; Santucci, A.; Sartori, F.; Sartori, R.; Sauter, O.; Scannell, R.; Schlummer, T.; Schmid, K.; Schmidt, V.; Schmuck, S.; Schneider, Mireille; Schöpf, K.; Schwörer, D.; Scott, S. D.; Sergienko, G.; Sertoli, M.; Shabbir, A.; Sharapov, S. E.; Shaw, A.; Shaw, R.; Sheikh, H.; Shepherd, A.; Shevelev, A.; Shumack, A.; Sias, G.; Sibbald, M.; Sieglin, B.; Silburn, S.; Silva, A.; Silva, C.; Simmons, P. A.; Simpson, J.; Simpson-Hutchinson, J.; Sinha, A.; Sipilä, S. K.; Sips, A. C.C.; Sirén, P.; Sirinelli, A.; Sjöstrand, H.; Skiba, M.; Skilton, R.; Slabkowska, K.; Slade, B.; Smith, N.; Smith, P. G.; Smith, R.; Smith, T. J.; Smithies, M.; Snoj, L.; Soare, S.; Solano, E. R.; Somers, A.; Sommariva, C.; Sonato, P.; Sopplesa, A.; Sousa, J.; Sozzi, C.; Spagnolo, S.; Spelzini, T.; Spineanu, F.; Stables, G.; Stamatelatos, I.; Stamp, M. F.; Staniec, P.; Stankūnas, G.; Stan-Sion, C.; Stead, M. J.; Stefanikova, E.; Stepanov, I.; Stephen, A. V.; Stephen, M.; Stevens, A.; Stevens, B. D.; Strachan, J.; Strand, P.; Strauss, H. R.; Ström, P.; Stubbs, G.; Studholme, W.; Subba, F.; Summers, H. P.; Svensson, J.; Świderski; Szabolics, T.; Szawlowski, M.; Szepesi, G.; Suzuki, T. T.; Tál, B.; Tala, T.; Talbot, A. R.; Talebzadeh, S.; Taliercio, C.; Tamain, P.; Tame, C.; Tang, W.; Tardocchi, M.; Taroni, L.; Taylor, D.; Taylor, K. A.; Tegnered, D.; Telesca, G.; Teplova, N.; Terranova, D.; Testa, D.; Tholerus, E.; Thomas, J. D.; Thomas, P.; Thompson, A.; Thompson, C. A.; Thompson, V. K.; Thorne, L.; Thornton, A.; Thrysøe, A. S.; Tigwell, P. A.; Tipton, N.; Tiseanu, I.; Tojo, H.; Tokitani, M.; Tolias, P.; Tomeš, M.; Tonner, P.; Towndrow, M.; Trimble, P.; Tripsky, M.; Tsalas, M.; Tsavalas, P.; Tskhakaya Jun, D.; Turner, I.; Turner, M. M.; Turnyanskiy, M.; Tvalashvili, G.; Tyrrell, S. G.J.; Uccello, A.; Ul-Abidin, Z.; Uljanovs, J.; Ulyatt, D.; Urano, H.; Uytdenhouwen, I.; Vadgama, A. P.; Valcarcel, D.; Valentinuzzi, M.; Valisa, M.; Vallejos Olivares, P.; Valovic, M.; Van De Mortel, M.; Van Eester, D.; Van Renterghem, W.; Van Rooij, G. J.; Varje, J.; Varoutis, S.; Vartanian, S.; Vasava, K.; Vasilopoulou, T.; Vega, J.; Verdoolaege, G.; Verhoeven, R.; Verona, C.; Verona Rinati, G.; Veshchev, E.; Vianello, N.; Vicente, J.; Viezzer, E.; Villari, S.; Villone, F.; Vincenzi, P.; Vinyar, I.; Viola, B.; Vitins, A.; Vizvary, Z.; Vlad, M.; Voitsekhovitch, I.; Vondráček, P.; Vora, N.; Vu, T.; Pires De Sa, W. W.; Wakeling, B.; Waldon, C. W.F.; Walkden, N.; Walker, M.; Walker, R.; Walsh, M.; Wang, E.; Wang, N.; Warder, S.; Warren, R. J.; Waterhouse, J.; Watkins, N. W.; Watts, C.; Wauters, T.; Weckmann, A.; Weiland, J.; Weisen, H.; Weiszflog, M.; Wellstood, C.; West, A. T.; Wheatley, M. R.; Whetham, S.; Whitehead, A. M.; Whitehead, B. D.; Widdowson, A. M.; Wiesen, S.; Wilkinson, J.; Williams, J.; Williams, M.; Wilson, A. R.; Wilson, D. J.; Wilson, H. R.; Wilson, J.; Wischmeier, M.; Withenshaw, G.; Withycombe, A.; Witts, D. M.; Wood, D.; Wood, R.; Woodley, C.; Wray, S.; Wright, J.; Wright, J. C.; Wu, J.; Wukitch, S.; Wynn, A.; Xu, T.; Yadikin, D.; Yanling, W.; Yao, Lieming; Yavorskij, V.; Yoo, M. G.; Young, C.; Young, D.; Young, I. D.; Young, R.; Zacks, J.; Zagorski, R.; Zaitsev, F. S.; Zanino, R.; Zarins, A.; Zastrow, K. D.; Zerbini, M.; Zhou, Y.; Zhang, Wei; Zilli, E.; Zoita, V.; Zoletnik, S.; Zychor, I.; Department of Applied Physics; Fusion and Plasma Physics; Culham Science Centre; Jülich Research Centre; Institute for Plasma Research; Instituto Superior Técnico Lisboa; Queen's University Belfast; University of Helsinki; French Alternative Energies and Atomic Energy Commission; National Institutes for Quantum and Radiological Science and Technology; VTT Technical Research Centre of Finland; University of Naples Federico II; National Distance Education University; National Research Council of Italy; ITER; Russian Research Centre Kurchatov Institute; University of Naples Parthenope; Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile; Troitsk Institute for Innovation and Fusion Research; Uppsala University; National Institute for Cryogenics and Isotopic Technology; Max Planck Institute for Plasma Physics; University of Catania; Fusion for Energy; National Institute for Fusion Science; Massachusetts Institute of Technology; University of Latvia; Imperial College London; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; University of Oxford; EUROfusion Programme Management Unit; Oak Ridge National Laboratory; Karlsruhe Institute of Technology; University of York; KTH Royal Institute of Technology; Maritime University Of Szczecin; Institute of Nuclear Physics of the Polish Academy of Sciences; Czech Academy of Sciences; University of Trento; Swiss Federal Institute of Technology Lausanne; Wigner Research Centre for Physics; Comenius University Bratislava; Lviv Polytechnic National University; University of Milano-Bicocca; National Institute for Optoelectronics; Fourth State Research in Austin; University of Texas at Austin; Belgian Nuclear Research Centre; National Centre for Nuclear Research; Princeton University; CNRS; University of Cagliari; University of Warwick; Soltan Institute for Nuclear Studies; Dutch Institute for Fundamental Energy Research; National Institute for Laser, Plasma and Radiation Physics; Ghent University; Jožef Stefan Institute; CAS - Institute of Plasma Physics; University of California, San Diego; Royal Military Academy; Horia Hulubei National Institute of Physics and Nuclear Engineering; Chalmers University of Technology; Technical University of Madrid; University of Campania Luigi Vanvitelli; Warsaw University of Technology; University of Basilicata; Barcelona Supercomputing Center; University of Seville; Centro Brasileiro de Pesquisas Físicas; University of Rome Tor Vergata; Ioffe Institute; General Atomics; University of Innsbruck; University of Toyama; University of Strathclyde; National Technical University of Athens; European Commission; Tuscia University; Technical University of Denmark; Korea Advanced Institute of Science and Technology; Seoul National University; University College Cork; Vienna University of Technology; University of Opole; Daegu University; National Fusion Research Institute; Dublin City University; Forschungszentrum Jülich; PELIN LLC; Arizona State University; Complutense University of Madrid; University of Basel; Universidad Carlos III de Madrid; Consorzio CREATE; Demokritos National Centre for Scientific Research; Purdue University; Université libre de Bruxelles; University of California; Universidade de São Paulo; Lithuanian Energy Institute; HRS Fusion; Polytechnic University of Turin; University of Cassino and Southern Lazio; University of Electronic Science and Technology of ChinaThe 2014-2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L-H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at β N ∼ 1.8 and n/n GW ∼ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D-T campaign and 14 MeV neutron calibration strategy are reviewed.Item Parameter dependencies of the experimental nitrogen concentration required for detachment on ASDEX Upgrade and JET(Elsevier Science Publishers BV, 2021-09) Henderson, S. S.; Bernert, M.; Giroud, C.; Brida, D.; Cavedon, M.; David, P.; Dux, R.; Harrison, J. R.; Huber, A.; Kallenbach, A.; Karhunen, J.; Lomanowski, B.; Matthews, G.; Meigs, A.; Pitts, R. A.; Reimold, F.; Reinke, M. L.; Silburn, S.; Vianello, N.; Wiesen, S.; Wischmeier, M.; , EUROfusion MST1 Team; , ASDEX Upgrade Team; , JET Contributors; Department of Applied Physics; Culham Science Centre; Max-Planck-Institut für Plasmaphysik; Jülich Research Centre; ITER; Oak Ridge National Laboratory; University of PadovaWhile current tokamak experiments are beginning to use real-time feedback control systems to manage the plasma exhaust, future tokamaks still require validation of theoretical models used to predict the threshold impurity concentration required to sufficiently reduce the power and particle fluxes to the divertor. This work exploits new spectroscopic measurements of the divertor nitrogen concentration, cN, in partially detached N2-seeded H-mode plasmas on ASDEX Upgrade (AUG) and JET with the ITER-Like Wall (JET-ILW) to test the parameter dependencies of the power flowing to the outer divertor, Pdiv,outer, and the separatrix electron density, ne,sep. A least-squares regression of the AUG measurements demonstrates that the threshold cN required for detachment scales as cN∝Pdiv,outer1.19±0.32ne,sep-2.77±0.36. This scaling of ne,sep is also consistent with the measurements from JET which, at constant Pdiv,outer, show cN∝ne,sep-2.43±0.27. The dependencies of Pdiv,outer and ne,sep is demonstrated over at least a factor of two change in both parameters and indicates a stronger dependence on ne,sep in comparison to the Lengyel model, which could be due to the assumption in this model that the heat flux channel width is independent of density. This first assessment of detachment scaling with impurity seeding highlights the need for further analysis of the systematic uncertainties of the measurement and more consistent scenarios from more tokamaks to investigate the machine size scaling.Item Peculiarity of highly radiating multi-impurity seeded H-mode plasmas on JET with ITER-like wall(IOP Publishing Ltd., 2020-01-01) Huber, A.; Wischmeier, M.; Bernert, M.; Wiesen, S.; Glöggler, S.; Aleiferis, S.; Brezinsek, S.; Calabro, G.; Carvalho, P.; Huber, V.; Sergienko, G.; Solano, E. R.; Giroud, C.; Groth, M.; Jachmich, S.; Linsmeier, Ch; Matthews, G. F.; Meigs, A. G.; Mertens, Ph; Sertoli, M.; Silburn, S.; Telesca, G.; Department of Applied Physics; Fusion and Plasma Physics; Jülich Research Centre; Max-Planck-Institut für Plasmaphysik; Demokritos National Centre for Scientific Research; Tuscia University; Universidade Lisboa; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; Culham Science Centre; Royal Military Academy; Soltan Institute for Nuclear StudiesOn JET with fully metallic first wall, highly radiative conditions with N2, Ne and Ar as well as their mixture as radiators are approached in high density H-mode plasmas. The confinement increases from H 98(y,2) = 0.65 in unseeded pulses with γ rad ∼ 30% to a value of H 98(y,2) = 0.75 at γ rad ∼ 50% with N2 injection. A degradation of the pedestal profile is compensated by steeper core n e and T e profiles. Further increase of γ rad with increase of the N2 seeding rate leads to a moderate confinement degradation which can be avoided by applying of combined impurity seeding. The enhancement of the plasma performance for the radiation fractions beyond 55% with the maximum value of H 98(y,2) = 0.78 is reached with combined N2 + Ne and N2 + Ar impurity injections. The observed intense, strongly localized radiation at the X-point inside the confined plasma in the scenarios with the highest radiated power fraction is interlinked to complete divertor detachment. In the JET-ILW, the X-point radiation is stable, reproducible and reversible.Item Physically principled reflection models applied to filtered camera imaging inversions in metal walled fusion machines(AMER INST PHYSICS, 2019-04-01) Carr, M.; Meakins, A.; Silburn, S. A.; Karhunen, J.; Bernert, M.; Bowman, C.; Callarelli, A.; Carvalho, P.; Giroud, C.; Harrison, J. R.; Henderson, S. S.; Huber, A.; Lipschultz, B.; Lunt, T.; Moulton, D.; Reimold, F.; Department of Applied Physics; JET; Max-Planck-Institut für Plasmaphysik; University of York; Forschungszentrum JülichRay-tracing techniques are applied to filtered divertor imaging, a diagnostic that has long suffered from artifacts due to the polluting effect of reflected light in metal walled fusion machines. Physically realistic surface reflections were modeled using a Cook-Torrance micro-facet bi-directional reflection distribution function applied to a high resolution mesh of the vessel geometry. In the absence of gonioreflectometer measurements, a technique was developed to fit the free parameters of the Cook-Torrance model against images of the JET in-vessel light sources. By coupling this model with high fidelity plasma fluid simulations, photo-realistic renderings of a number of tokamak plasma emission scenarios were generated. Finally, a sensitivity matrix describing the optical coupling of a JET divertor camera and the emission profile of the plasma was obtained, including full reflection effects. These matrices are used to perform inversions on measured data and shown to reduce the level of artifacts in inverted emission profiles.Item The radiated power limit in impurity seeded JET-ILW plasmas(Elsevier Science Publishers, 2022-10) Huber, A.; Wischmeier, M.; Wiesen, S.; Bernert, M.; Chankin, A. V.; Aleiferis, S.; Brezinsek, S.; Huber, V.; Sergienko, G.; Giroud, C.; Groth, M.; Jachmich, S.; Linsmeier, Ch; Lomanowski, B.; Lowry, C.; Matthews, G. F.; Meigs, A. G.; Mertens, Ph; Silburn, S.; Telesca, G.; Department of Applied Physics; Fusion and Plasma Physics; Forschungszentrum Jülich; Max-Planck-Institut für Plasmaphysik; Demokritos National Centre for Scientific Research; CCFE; Royal Military Academy; Soltan Institute for Nuclear Studies; Oak Ridge National LaboratoryThe total radiated fraction is examined in high density H-mode plasmas (Greenwald fraction of about 85 %) in JET by the variation of the auxiliary heating power of Pheat = 14 MW-29 MW. An achieved radiation fraction of about 75 % at most has been observed in JET-ILW, which is less than the highest achievable (≈90 %) fraction in JET-C during the high radiative power scenarios with N2 seeding. It is shown that the maximal achievable total radiation fraction averaged over ELM cycles has a strong dependence on the radiation efficiency of the ELM energy, θrad: [Formula presented] About 50 % and 16 % of the ELM induced diamagnetic energy drop (ΔWELM) radiates during the ELM in JET-C and JET-ILW, respectively, which corresponds to the maximum total radiated powers of γrad,JET-Cmax=0.87 and γrad,JET-ILWmax=0.77. These values of the maximum of the radiative power fractions are in good agreement with γradmax experimentally observed in JET-C (90 %) and JET-ILW (75 %).Item Real-time protection of the JET ITER-like wall based on near infrared imaging diagnostic systems(2018-08-09) Huber, A.; Kinna, D.; Huber, V.; Arnoux, G.; Sergienko, G.; Balboa, I.; Balorin, C.; Carman, P.; Carvalho, P.; Collins, S.; Conway, N.; McCullen, P.; Drenik, A.; Jachmich, S.; Jouve, M.; Linsmeier, Ch; Lomanowski, B.; Lomas, P. J.; Lowry, C. G.; Maggi, C. F.; Matthews, G. F.; Meigs, A.; Mertens, Ph; Nunes, I.; Price, M.; Puglia, P.; Riccardo, V.; Rimini, F. G.; Widdowson, A.; Zastrow, K. D.; Department of Applied Physics; Forschungszentrum Jülich; JET; French Alternative Energies and Atomic Energy Commission; University of Lisbon; Max-Planck-Institut für Plasmaphysik; Royal Military Academy; European Commission; Swiss Federal Institute of Technology LausanneIn JET with ITER-like wall (JET-ILW), the first wall was changed to metallic materials (tungsten and beryllium) [1] which require a reliable protection system to avoid damage of the plasma-facing components (PFCs) due to beryllium melting or cracking of tungsten owing to thermal fatigue. To address this issue, a protection system with real time control, based on imaging diagnostics, has been implemented on JET-ILW in 2011. This paper describes the design, implementation, and operation of the near infrared imaging diagnostic system of the JET-ILW plasma experiment and its integration into the existing JET-ILW protection architecture. The imaging system comprises eleven analogue CCD cameras which demonstrate a high robustness against changes of system parameters like the emissivity. The system covers about two thirds of the main chamber wall and almost half of the divertor. A real-time imaging processing unit is used to convert the raw data into surface temperatures taking into account the different emissivity for the various materials and correcting for artefacts resulting e.g. from neutron impact. Regions of interest (ROI) on the selected PFCs are analysed in real time and the maximum temperature measured for each ROI is sent to other real time systems to trigger an appropriate response of the plasma control system, depending on the location of a hot spot. A hot spot validation algorithm was successfully integrated into the real-time system and is now used to avoid false alarms caused by neutrons and dust. The design choices made for the video imaging system, the implications for the hardware components and the calibration procedure are discussed. It will be demonstrated that the video imaging protection system can work properly under harsh electromagnetic conditions as well as under neutron and gamma radiation. Examples will be shown of instances of hot spot detection that abort the plasma discharge. The limits of the protection system and the associated constraints on plasma operation are also presented. The real-time protection system has been operating routinely since 2011. During this period, less than 0.5% of the terminated discharges were aborted by a malfunction of the system. About 2%-3% of the discharges were terminated due to the detection of actual hot spots.