Browsing by Author "Hinnemann, Berit"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
- Noncontact atomic force microscopy imaging of atomic structure and cation defects of the polar MgAl2O4 (100) surface: Experiments and first-principles simulations
School of Science | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2011) Rasmussen, Morten K.; Foster, Adam S.; Canova, Filippo F.; Hinnemann, Berit; Helveg, Stig; Meinander, Kristoffer; Besenbacher, Flemming; Lauritsen, Jeppe V.Atom-resolved noncontact atomic force microscopy (NC-AFM) was recently used to reveal that the insulating spinel MgAl2O4(100) surface, when prepared under vacuum conditions, adopts a structurally well-defined Al and O-rich structure (Al4-O4-Al4 termination) consisting of alternating Al and double-O rows, which are, however, interrupted by defects identified as interchanged Mg in the surface layers (so-called antisite defects). From an interplay of futher NC-AFM experiments and first-principles NC-AFM image simulations, we present here a detailed analysis of the NC-AFM contrast on the MgAl2O4(100) surface. Experiments show that the contrast on MgAl2O4(100) in atom-resolved NC-AFM is dominated by two distinctly different types of contrast modes, reflecting two oppositely charged tip-apex terminations. In this paper, we analyze the contrast associated with these imaging modes and show that a positively charged tip-apex (presumably Mg2+) interacts most strongly with the oxygen atoms, thus imaging the oxygen lattice, whereas a negatively charged tip-apex (O2−) will reveal the cation sublattice on MgAl2O4. The analysis of force-vs-distance calculations for the two tips shows that this qualitative picture, developed in our previous study, holds for all realistic tip-surface imaging parameters, but the detailed resolution on the O double rows and Al rows changes as a function of tip-surface distance, which is also observed experimentally. We also provide an analysis of the tip dependency and tip-surface distance dependency for the NC-AFM contrast associated with single Al vacancies and Mg-Al antisite defects on the MgAl2O4(100) surface and show that it is possible on the basis of NC-AFM image simulations to discriminate between the Al3+ and Mg2+ species in antisite defects and hypothetical Al vacancies. - Noncontact atomic force microscopy imaging of the atomic structure and cation defects of the polar MgAl2O4 (100) surface
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2011) Rasmussen, Morten K.; Foster, Adam S.; F. Canova, Filippo; Hinnemann, Berit; Helveg, Stig; Meinander, Kristoffer; Besenbacher, Flemming; Lauritsen, Jeppe V.Atom-resolved noncontact atomic force microscopy (NC-AFM) was recently used to reveal that the insulating spinel MgAl2O4(100) surface, when prepared under vacuum conditions, adopts a structurally well-defined Al and O-rich structure (Al4-O4-Al4 termination) consisting of alternating Al and double-O rows, which are, however, interrupted by defects identified as interchanged Mg in the surface layers (so-called antisite defects). From an interplay of futher NC-AFM experiments and first-principles NC-AFM image simulations, we present here a detailed analysis of the NC-AFM contrast on the MgAl2O4(100) surface. Experiments show that the contrast on MgAl2O4(100) in atom-resolved NC-AFM is dominated by two distinctly different types of contrast modes, reflecting two oppositely charged tip-apex terminations. In this paper, we analyze the contrast associated with these imaging modes and show that a positively charged tip-apex (presumably Mg2+) interacts most strongly with the oxygen atoms, thus imaging the oxygen lattice, whereas a negatively charged tip-apex (O2−) will reveal the cation sublattice on MgAl2O4. The analysis of force-vs-distance calculations for the two tips shows that this qualitative picture, developed in our previous study, holds for all realistic tip-surface imaging parameters, but the detailed resolution on the O double rows and Al rows changes as a function of tip-surface distance, which is also observed experimentally. We also provide an analysis of the tip dependency and tip-surface distance dependency for the NC-AFM contrast associated with single Al vacancies and Mg-Al antisite defects on the MgAl2O4(100) surface and show that it is possible on the basis of NC-AFM image simulations to discriminate between the Al3+ and Mg2+ species in antisite defects and hypothetical Al vacancies. - Stable Cation Inversion at the MgAl2O4(100) Surface
School of Science | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2011) Rasmussen, Morten K.; Foster, Adam S.; Hinnemann, Berit; Canova, Filippo F.; Helveg, Stig; Meinander, Kristoffer; Martin, Natalia M.; Knudsen, Jan; Vlad, Alina; Lundgren, Edvin; Stierle, Andreas; Besenbacher, Flemming; Lauritsen, Jeppe V.From an interplay of atom-resolved noncontact atomic force microscopy, surface x-ray diffraction experiments, and density functional theory calculations, we reveal the detailed atomic-scale structure of the (100) surface of an insulating ternary metal oxide, MgAl2O4 (spinel). We surprisingly find that the MgAl2O4(100) surface is terminated by an Al and O-rich structure with a thermodynamically favored amount of Al atoms interchanged with Mg. This finding implies that so-called Mg-Al antisites, which are defects in the bulk of MgAl2O4, become a thermodynamically stable and integral part of the surface.