Browsing by Author "Harva, Markus"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Algorithms for approximate Bayesian inference with applications to astronomical data analysis(Teknillinen korkeakoulu, 2008) Harva, Markus; Tietojenkäsittelytieteen laitosBayesian inference is a theoretically well-founded and conceptually simple approach to data analysis. The computations in practical problems are anything but simple though, and thus approximations are almost always a necessity. The topic of this thesis is approximate Bayesian inference and its applications in three intertwined problem domains. Variational Bayesian learning is one type of approximate inference. Its main advantage is its computational efficiency compared to the much applied sampling based methods. Its main disadvantage, on the other hand, is the large amount of analytical work required to derive the necessary components for the algorithm. One part of this thesis reports on an effort to automate variational Bayesian learning of a certain class of models. The second part of the thesis is concerned with heteroscedastic modelling which is synonymous to variance modelling. Heteroscedastic models are particularly suitable for the Bayesian treatment as many of the traditional estimation methods do not produce satisfactory results for them. In the thesis, variance models and algorithms for estimating them are studied in two different contexts: in source separation and in regression. Astronomical applications constitute the third part of the thesis. Two problems are posed. One is concerned with the separation of stellar subpopulation spectra from observed galaxy spectra; the other is concerned with estimating the time-delays in gravitational lensing. Solutions to both of these problems are presented, which heavily rely on the machinery of approximate inference.Item Hierarchical Variance Models of Image Sequences(2004) Harva, Markus; Raiko, Tapani; Tietotekniikan osasto; Teknillinen korkeakoulu; Helsinki University of Technology; Karhunen, JuhaOhjaamattomaan oppimiseen perustuvat kuvasekvenssien mallit tuottavat yleensä yksinkertaisia piirteitä kuten reunasuotimia. Nämä yksinkertaiset piirteet eivät tarjoa kovinkaan korkean tason informaatiota kuvasekvenssistä. Yhdistämällä näiden tuottamaa informaatiota on kuitenkin mahdollista irrottaa mielekkäämpiä piirteitä datasta. Tilastollisten mallien ennustamat arvot ovat yleensä taustalla olevien todennäköisyysjakaumien odotusarvoja. Korkeamman kertaluvun statistiikat jätetään huomiotta. Varianssi kuvaa todennäköisyysjakauman hajontaa sen keskiarvosta. Varianssien estimointi yhdessä odotusarvojen kanssa on hankalaa ja yleensä sitä ei juurikaan tehdä. Kuitenkin on hyvin tiedossa, että monissa datajoukoissa varianssi sisältää paljon informaatiota, jota ei saada irrotettua pelkkiä keskiarvoja mallintamalla. Tässä työssä oleellinen kysymys on, saavutetaanko varianssien mallintamisella kuvasekvensseissä jotain hyödyllistä tavallisiin malleihin verrattuna. Työssä näytetään, että näin todellakin on ja rakennetaan eräs variansseja hyödyntävä hierarkkinen malli. Myös opetusalgoritmi, mukaanlukien lokaalit päivityssäännöt ja globaalit alustusskeemat, esitellään. Perusmenetelmänä sovelletaan bayesiläistä variaatio-oppimista, joka on osoittautunut luotettavaksi menetelmäksi vaikeidenkin ongelmien ratkaisemiseen. Mallia kokeillaan keinotekoisella datalla, millä pyritään osoittamaan, että opetusalgoritmi toimii. Simulaatiot luonnollisesta näkymästä tuotetulla kuvasekvenssillä osoittavat, että algoritmi toimii myös realistisemmalla datalla.