Browsing by Author "Gissey, Giorgio Castagneto"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Centralized vs. distributed energy storage – Benefits for residential users(PERGAMON-ELSEVIER SCIENCE LTD, 2021-12-01) Zakeri, Behnam; Gissey, Giorgio Castagneto; Dodds, Paul E.; Subkhankulova, Dina; Department of Mechanical Engineering; Energy efficiency and systems; University College LondonDistributed energy storage is a solution for increasing self-consumption of variable renewable energy such as solar and wind energy at the end user site. Small-scale energy storage systems can be centrally coordinated by “aggregation” to offer different services to the grid, such as operational flexibility and peak shaving. This paper shows how centralized coordination vs. distributed operation of residential electricity storage (home batteries) could affect the savings of owners. A hybrid method is applied to model the operation of solar photovoltaic (PV) and battery energy storage for a typical UK householder, linked with a whole-system power system model to account for long-term energy transitions. Based on results, electricity consumers can accumulate greater savings under centralized coordination by between 4 and 8% when operating no technology, by 3-11% with electricity storage alone, by 2-5% with stand-alone solar PV, while 0-2% with PV-battery combined. Centralized coordination of home batteries offers more optimized electricity prices in the system, and as such, higher private savings to all consumers. However, consumers without onsite energy technologies benefit more than PV-battery owners. Therefore, based on system-level benefits of aggregation, the regulator should incentivize prosumers with PV-battery, who are able to balance their electricity supply-demand even without central coordination, to let their storage be controlled centrally. Possible revenues of storage owners from ancillary services as well as the cost of aggregation (e.g., transaction fees charged by aggregators) are not considered in this analysis.Item Policy options for enhancing economic profitability of residential solar photovoltaic with battery energy storage(ELSEVIER SCI LTD, 2021-05-15) Zakeri, Behnam; Cross, Samuel; Dodds, Paul E.; Gissey, Giorgio Castagneto; Department of Mechanical Engineering; Energy Conversion; University College LondonShare of solar photovoltaic (PV) is rapidly growing worldwide as technology costs decline and national energy policies promote distributed renewable energy systems. Solar PV can be paired with energy storage systems to increase the self-consumption of PV onsite, and possibly provide grid-level services, such as peak shaving and load levelling. However, the investment on energy storage may not return under current market conditions. We propose three types of policies to incentivise residential electricity consumers to pair solar PV with battery energy storage, namely, a PV self-consumption feed-in tariff bonus; “energy storage policies” for rewarding discharge of electricity from home batteries at times the grid needs most; and dynamic retail pricing mechanisms for enhancing the arbitrage value of residential electricity storage. We soft-link a consumer cost optimization model with a national power system model to analyse the impact of the proposed policies on the economic viability of PV-storage for residential end-users in the UK. The results show that replacing PV generation incentives with a corresponding PV self-consumption bonus offers return on investment in a home battery, equal to a 70% capital subsidy for the battery, but with one-third of regulatory costs. The proposed energy storage policies offer positive return on investment of 40% when pairing a battery with solar PV, without the need for central coordination of decentralized energy storage nor providing ancillary services by electricity storage in buildings. We find that the choice of optimal storage size and dynamic electricity tariffs are key to maximize the profitability of PV-battery energy storage systems.