Browsing by Author "Eich, T."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Comparative H-mode density limit studies in JET and AUG(2017-08-01) Huber, A.; Bernert, M.; Brezinsek, S.; Chankin, A. V.; Sergienko, G.; Huber, V.; Wiesen, S.; Abreu, P.; Beurskens, M. N.A.; Boboc, A.; Brix, M.; Calabrò, G.; Carralero, D.; Delabie, E.; Eich, T.; Esser, H. G.; Groth, M.; Guillemaut, C.; Jachmich, S.; Järvinen, A.; Joffrin, E.; Kallenbach, A.; Kruezi, U.; Lang, P.; Linsmeier, Ch; Lowry, C. G.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Mertens, Ph; Reimold, F.; Schweinzer, J.; Sips, G.; Stamp, M.; Viezzer, E.; Wischmeier, M.; Zohm, H.; , JET Contributors; Department of Applied Physics; Fusion and Plasma Physics; Culham Science Centre; Max Planck Institute for Plasma Physics; Jülich Research Centre; Instituto Superior Técnico Lisboa; Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile; Oak Ridge National Laboratory; Royal Military Academy; French Alternative Energies and Atomic Energy CommissionIdentification of the mechanisms for the H-mode density limit in machines with fully metallic walls, and their scaling to future devices is essential to find for these machines the optimal operational boundaries with the highest attainable density and confinement. Systematic investigations of H-mode density limit plasmas in experiments with deuterium external gas fuelling have been performed on machines with fully metallic walls, JET and AUG and results have been compared with one another. Basically, the operation phases are identical for both tokamaks: the stable H-mode phase, degrading H-mode phase, breakdown of the H-mode with energy confinement deterioration usually accompanied by a dithering cycling phase, followed by the L-mode phase. The observed H-mode density limit on both machines is found close to the Greenwald limit (n/nGW = 0.8–1.1 in the observed magnetic configurations). The similar behavior of the radiation on both tokamaks demonstrates that the density limit (DL) is neither related to additional energy losses from the confined region by radiation, nor to an inward collapse of the hot discharge core induced by overcooling of the plasma periphery by radiation. It was observed on both machines that detachment, as well as the X-point MARFE itself, does not trigger a transition in the confinement regime and thus does not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the transition from H- to L-mode. The measured Greenwald fractions are found to be consistent with the predictions from different theoretical models [16,30] based on MHD instability theory in the near-SOL.Item Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade(IOP PUBLISHING LTD, 2019-06-26) Labit, B.; Eich, T.; Harrer, G. F.; Wolfrum, E.; Bernert, M.; Dunne, M. G.; Frassinetti, L.; Hennequin, P.; Maurizio, R.; Merle, A.; Meyer, H.; Saarelma, S.; Sheikh, U.; Adamek, J.; Agostini, M.; Aguiam, D.; Akers, R.; Albanese, Raffaele; Albert, C.; Alessi, E.; Ambrosino, R.; Andr be, Y.; Angioni, C.; Apruzzese, G.; Aradi, M.; Arnichand, H.; Auriemma, F.; Avdeeva, G.; Ayllon-Guerola, J. M.; Bagnato, F.; Bandaru, V. K.; Barnes, M.; Barrera-Orte, L.; Bettini, P.; Bilato, R.; Biletskyi, O.; Bilkova, P.; Bin, William; Blanchard, P.; Blanken, T.; Bobkov, V.; Bock, A.; Boeyaert, D.; Bogar, K.; Bogar, O.; Bohm, P.; Bolzonella, T.; Bombarda, F.; Boncagni, L.; Bouquey, F.; Bowman, C.; Brezinsek, S.; Brida, D.; Brunetti, D.; Bucalossi, J.; Buchanan, J.; Buermans, J.; Bufferand, H.; Buller, S.; Buratti, P.; Burckhart, A.; Calabr, G.; Calacci, L.; Camenen, Y.; Cannas, B.; Cano Megías, P.; Carnevale, D.; Carpanese, F.; Carr, M.; Carralero, D.; Carraro, L.; Casolari, A.; Cathey, A.; Causa, F.; Cavedon, M.; Cecconello, M.; Ceccuzzi, S.; Cerovsky, J.; Chapman, S.; Chmielewski, P.; Choi, D.; Cianfarani, C.; Ciraolo, G.; Coda, S.; Coelho, R.; Colas, L.; Colette, D.; Cordaro, L.; Cordella, F.; Costea, S.; Coster, D.; Cruz Zabala, D. J.; Cseh, G.; Czarnecka, A.; Cziegler, I.; D'Arcangelo, O.; Dal Molin, A.; David, P.; De Carolis, G.; De Oliveira, H.; Decker, J.; Dejarnac, R.; Delogu, R.; Den Harder, N.; Dimitrova, M.; Dolizy, F.; Domínguez-Palacios Durán, J. J.; Douai, D.; Drenik, A.; Dreval, M.; Dudson, B.; Dunai, D.; Duval, B. P.; Dux, R.; Elmore, S.; Embréus, O.; Erds, B.; Fable, E.; Faitsch, M.; Fanni, A.; Farnik, M.; Faust, I.; Faustin, J.; Fedorczak, N.; Felici, F.; Feng, S.; Feng, X.; Ferreira, J.; Ferr, G.; Février, O.; Ficker, O.; Figini, L.; Figueiredo, A.; Fil, A.; Fontana, M.; Francesco, M.; Fuchs, C.; Futatani, S.; Gabellieri, L.; Gadariya, D.; Gahle, D.; Galassi, D.; Gałązka, K.; Galdon-Quiroga, J.; Galeani, S.; Gallart, D.; Gallo, A.; Galperti, C.; Garavaglia, S.; Garcia, J.; Garcia-Lopez, Javier; Garcia-Mu oz, M.; Garzotti, L.; Gath, J.; Geiger, B.; Giacomelli, L.; Giannone, L.; Gibson, S.; Gil, L.; Giovannozzi, E.; Giruzzi, G.; Gobbin, M.; Gonzalez-Martin, J.; Goodman, T. P.; Gorini, G.; Gospodarczyk, M.; Granucci, G.; Grekov, D.; Grenfell, G.; Griener, M.; Groth, M.; Grover, O.; Gruca, M.; Gude, A.; Guimarais, L.; Gyergyek, T.; Hacek, P.; Hakola, A.; Ham, C.; Happel, T.; Harrison, J.; Havranek, A.; Hawke, J.; Henderson, S.; Hesslow, L.; Hitzler, F.; Hnat, B.; Hobirk, J.; Hoelzl, M.; Hogeweij, D.; Hopf, C.; Hoppe, M.; Horacek, J.; Hron, M.; Huang, Z.; Iantchenko, A.; Iglesias, D.; Igochine, V.; Innocente, P.; Ionita-Schrittwieser, C.; Isliker, H.; Ivanova-Stanik, I.; Jacobsen, A.; Jakubowski, M.; Janky, F.; Jardin, A.; Jaulmes, F.; Jensen, T.; Jonsson, T.; Kallenbach, A.; Kappatou, A.; Karpushov, A.; Kasilov, S.; Kazakov, Y.; Kazantzidis, P. V.; Keeling, D.; Kelemen, M.; Kendl, A.; Kernbichler, W.; Kirk, A.; Kocsis, G.; Komm, M.; Kong, M.; Korovin, V.; Koubiti, M.; Kovacic, J.; Krawczyk, N.; Krieger, K.; Kripner, L.; Křivská, A.; Kudlacek, O.; Kulyk, Y.; Kurki-Suonio, T.; Kwiatkowski, R.; Laggner, F.; Laguardia, L.; Lahtinen, A.; Lang, P.; Likonen, J.; Lipschultz, B.; Liu, Fukun; Lombroni, R.; Lorenzini, R.; Loschiavo, V. P.; Lunt, T.; MacUsova, E.; Madsen, J.; Maggiora, R.; Maljaars, B.; Manas, P.; Mantica, P.; Mantsinen, M. J.; Manz, P.; Maraschek, M.; Marchenko, V.; Marchetto, C.; Mariani, A.; Marini, C.; Markovic, T.; Marrelli, L.; Martin, P.; Martín Solís, J. R.; Martitsch, A.; Mastrostefano, S.; Matos, F.; Matthews, G.; Mayoral, M. L.; Mazon, D.; Mazzotta, C.; Mc Carthy, P.; McClements, K.; McDermott, R.; McMillan, B.; Meineri, C.; Menkovski, V.; Meshcheriakov, D.; Messmer, M.; Micheletti, D.; Milanesio, D.; Militello, F.; Miron, I. G.; Mlynar, J.; Moiseenko, V.; Molina Cabrera, P. A.; Morales, J.; Moret, J. M.; Moro, A.; Moulton, D.; Nabais, F.; Naulin, V.; Naydenkova, D.; Nem, R. D.; Nespoli, F.; Newton, S.; Nielsen, A. H.; Nielsen, S. K.; Nikolaeva, V.; Nocente, M.; Nowak, S.; Oberkofler, M.; Ochoukov, R.; Ollus, P.; Olsen, J.; Omotani, J.; Ongena, J.; Orain, F.; Orsitto, F. P.; Paccagnella, R.; Palha, A.; Panaccione, L.; Panek, R.; Panjan, M.; Papp, G.; Paradela Perez, I.; Parra, F.; Passeri, M.; Pau, A.; Pautasso, G.; Pavlichenko, R.; Perek, A.; Pericoli Radolfini, V.; Pesamosca, F.; Peterka, M.; Petrzilka, V.; Piergotti, V.; Pigatto, L.; Piovesan, P.; Piron, C.; Piron, L.; Plyusnin, V.; Pokol, G.; Poli, E.; Pölöskei, P.; Popov, T.; Popovic, Z.; Pór, G.; Porte, L.; Pucella, G.; Puiatti, M. E.; Pütterich, T.; Rabinski, M.; Juul Rasmussen, J.; Rasmussen, J.; Rattá, G. A.; Ratynskaia, S.; Ravensbergen, T.; Réfy, D.; Reich, M.; Reimerdes, H.; Reimold, F.; Reiser, D.; Reux, C.; Reznik, S.; Ricci, D.; Rispoli, N.; Rivero-Rodriguez, J. F.; Rocchi, G.; Rodriguez-Ramos, M.; Romano, A.; Rosato, J.; Rubinacci, G.; Rubino, G.; Ryan, D. A.; Salewski, M.; Salmi, A.; Samaddar, D.; Sanchis-Sanchez, L.; Santos, J.; Särkimäki, K.; Sassano, M.; Sauter, O.; Scannell, R.; Scheffer, M.; Schneider, B. S.; Schneider, P.; Schrittwieser, R.; Schubert, M.; Seidl, J.; Seliunin, E.; Sharapov, S.; Sheeba, R. R.; Sias, G.; Sieglin, B.; Silva, C.; Sipilä, S.; Smith, S.; Snicker, A.; Solano, E. R.; Hansen, S. K.; Soria-Hoyo, C.; Sorokovoy, E.; Sozzi, C.; Sperduti, A.; Spizzo, G.; Spolaore, M.; Stejner, M.; Stipani, L.; Stober, J.; Strand, P.; Sun, H.; Suttrop, W.; Sytnykov, D.; Szepesi, T.; Tál, B.; Tala, T.; Tardini, G.; Tardocchi, M.; Teplukhina, A.; Terranova, D.; Testa, D.; Theiler, C.; Thorén, E.; Thornton, A.; Tilia, B.; Tolias, P.; Tomes, M.; Toscano-Jimenez, M.; Tsironis, C.; Tsui, C.; Tudisco, O.; Urban, J.; Valisa, M.; Vallar, M.; Vallejos Olivares, P.; Valovic, M.; Van Vugt, D.; Vanovac, B.; Varje, J.; Varju, J.; Varoutis, S.; Vartanian, S.; Vasilovici, O.; Vega, J.; Verdoolaege, G.; Verhaegh, K.; Vermare, L.; Vianello, Nicola; Vicente, J.; Viezzer, E.; Villone, F.; Voitsekhovitch, I.; Voltolina, D.; Vondracek, P.; Vu, N. M.T.; Walkden, N.; Wauters, T.; Weiland, M.; Weinzettl, V.; Wensing, M.; Wiesen, S.; Wiesenberger, M.; Wilkie, G.; Willensdorfer, M.; Wischmeier, M.; Wu, K.; Xiang, L.; Zagorski, R.; Zaloga, D.; Zanca, P.; Zaplotnik, R.; Zebrowski, J.; Zhang, Wei; Zisis, A.; Zoletnik, S.; Zuin, M.; Wu, Kai; Department of Applied Physics; Fusion and Plasma Physics; Swiss Federal Institute of Technology Lausanne; Max-Planck-Institut für Plasmaphysik; Vienna University of Technology; KTH Royal Institute of Technology; Université Paris-Saclay; JET; Czech Academy of Sciences; National Research Council of Italy; University of Lisbon; University of Naples Federico II; Graz University of Technology; University of Naples Parthenope; Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile; Danmarks Tekniske Universitet; University of Seville; University of Oxford; EUROfusion Programme Management Unit; National Science Center Kharkov Institute of Physics and Technology; Eindhoven University of Technology; Forschungszentrum Jülich; French Alternative Energies and Atomic Energy Commission; University of York; Royal Military Academy; Chalmers University of Technology; Tuscia University; Università degli Studi di Roma Tor Vergata; CNRS; University of Cagliari; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; Uppsala University; University of Warwick; Soltan Institute for Nuclear Studies; University of Innsbruck; Hungarian Academy of Sciences; Budapest University of Technology and Economics; Durham University; BarcelonaTech; University of Strathclyde; Barcelona Supercomputing Center; University of Milano-Bicocca; Karlsruhe Institute of Technology; Jožef Stefan Institute; VTT Technical Research Centre of Finland; Dutch Institute for Fundamental Energy Research; Aristotle University of Thessaloniki; National Technical University of Athens; National Centre for Nuclear Research; University of Helsinki; Université Côte d'Azur; Polytechnic University of Turin; NASU - Institute of Nuclear Research; University of Cassino and Southern Lazio; University College Cork; National Institute for Laser, Plasma and Radiation Physics; Sofia University St. Kliment Ohridski; Ghent UniversityWithin the EUROfusion MST1 work package, a series of experiments has been conducted on AUG and TCV devices to disentangle the role of plasma fueling and plasma shape for the onset of small ELM regimes. On both devices, small ELM regimes with high confinement are achieved if and only if two conditions are fulfilled at the same time. Firstly, the plasma density at the separatrix must be large enough (ne,sep/nG ∼ 0.3), leading to a pressure profile flattening at the separatrix, which stabilizes type-I ELMs. Secondly, the magnetic configuration has to be close to a double null (DN), leading to a reduction of the magnetic shear in the extreme vicinity of the separatrix. As a consequence, its stabilizing effect on ballooning modes is weakened.Item Overview of ASDEX Upgrade results(2017-10) Aguiam, D.; Aho-Mantila, L.; Angioni, C.; Arden, N.; Parra, R. Arredondo; Asunta, O.; de Baar, M.; Balden, M.; Behler, K.; Bergmann, A.; Bernardo, J.; Bernert, M.; Beurskens, M.; Biancalani, A.; Bilato, R.; Birkenmeier, G.; Bobkov, V.; Bock, A.; Bogomolov, A.; Bolzonella, T.; Boeswirth, B.; Bottereau, C.; Bottino, A.; van den Brand, H.; Brezinsek, S.; Brida, D.; Brochard, F.; Bruhn, C.; Buchanan, J.; Buhler, A.; Burckhart, A.; Cambon-Silva, D.; Camenen, Y.; Carvalho, P.; Carrasco, G.; Cazzaniga, C.; Carr, M.; Carralero, D.; Casali, L.; Castaldo, C.; Cavedon, M.; Challis, C.; Chankin, A.; Chapman, I.; Clairet, F.; Classen, I.; Coda, S.; Coelho, R.; Coenen, J. W.; Colas, L.; Conway, G.; Costea, S.; Coster, D. P.; Croci, G.; Cseh, G.; Czarnecka, A.; D'Arcangelo, O.; Day, C.; Delogu, R.; de Marne, P.; Denk, S.; Denner, P.; Dibon, M.; D'Inca, R.; Di Siena, A.; Douai, D.; Drenik, A.; Drube, R.; Dunne, M.; Duval, B. P.; Dux, R.; Eich, T.; Elgeti, S.; Engelhardt, K.; Erdos, B.; Erofeev, I.; Esposito, B.; Fable, E.; Faitsch, M.; Fantz, U.; Faugel, H.; Felici, F.; Fietz, S.; Figueredo, A.; Fischer, R.; Ford, O.; Frassinetti, L.; Freethy, S.; Froeschle, M.; Fuchert, G.; Fuchs, J. C.; Fuenfgelder, H.; Galazka, K.; Galdon-Quiroga, J.; Gallo, A.; Gao, Y.; Garavaglia, S.; Garcia-Munoz, M.; Geiger, B.; Cianfarani, C.; Giannone, L.; Giovannozzi, E.; Gleason-Gonzalez, C.; Gloeggler, S.; Gobbin, M.; Goerler, T.; Goodman, T.; Gorini, G.; Gradic, D.; Graeter, A.; Granucci, G.; Greuner, H.; Griener, M.; Groth, M.; Gude, A.; Guenter, S.; Guimarais, L.; Haas, G.; Hakola, A. H.; Ham, C.; Happel, T.; Harrison, J.; Hatch, D.; Hauer, V.; Hayward, T.; Heinemann, B.; Heinzel, S.; Hellsten, T.; Henderson, S.; Hennequin, P.; Herrmann, A.; Heyn, E.; Hitzler, F.; Hobirk, J.; Hoelzl, M.; Hoeschen, T.; Holm, J. H.; Hopf, C.; Hoppe, F.; Horvath, L.; Houben, A.; Huber, A.; Igochine, V.; Ilkei, T.; Ivanova-Stanik, I.; Jacob, W.; Jacobsen, A. S.; Jacquot, J.; Janky, F.; Jardin, A.; Jaulmes, F.; Jenko, F.; Jensen, T.; Joffrin, E.; Kaesemann, C.; Kallenbach, A.; Kalvin, S.; Kantor, M.; Kappatou, A.; Kardaun, O.; Karhunen, J.; Kasilov, S.; Kernbichler, W.; Kim, D.; Kimmig, S.; Kirk, A.; Klingshirn, H. -J.; Koch, F.; Kocsis, G.; Koehn, A.; Kraus, M.; Krieger, K.; Krivska, A.; Kraemr-Flecken, A.; Kurki-Suonio, T.; Kurzan, B.; Lackner, K.; Laggner, F.; Lang, P. T.; Lauber, P.; Lazanyi, N.; Lazaros, A.; Lebschy, A.; Li, L.; Li, M.; Liang, Y.; Lipschultz, B.; Liu, Y.; Lohs, A.; Luhmann, N. C.; Lunt, T.; Lyssoivan, A.; Madsen, J.; Maier, H.; Maj, O.; Mailloux, J.; Maljaars, E.; Manas, P.; Mancini, A.; Manhard, A.; Manso, M. -E.; Mantica, P.; Mantsinen, M.; Manz, P.; Maraschek, M.; Martens, C.; Martin, P.; Marrelli, L.; Martitsch, A.; Mastrostefano, S.; Mayer, A.; Mayer, M.; Mazon, D.; McCarthy, P. J.; McDermott, R.; Meisl, G.; Meister, H.; Medvedeva, A.; Merkel, P.; Merkel, R.; Merle, A.; Mertens, V.; Meshcheriakov, D.; Meyer, H.; Meyer, O.; Miettunen, J.; Milanesio, D.; Mink, F.; Mlynek, A.; Monaco, F.; Moon, C.; Nazikian, R.; Nemes-Czopf, A.; Neu, G.; Neu, R.; Nielsen, A. H.; Nielsen, S. K.; Nikolaeva, V.; Nocente, M.; Noterdaeme, J. -M.; Nowak, S.; Oberkofler, M.; Oberparleiter, M.; Ochoukov, R.; Odstrcil, T.; Olsen, J.; Orain, F.; Palermo, F.; Papp, G.; Perez, I. Paradela; Pautasso, G.; Enzel, F.; Petersson, P.; Pinzon, J.; Piovesan, P.; Piron, C.; Plaum, B.; Ploeckl, B.; Plyusnin, V.; Pokol, G.; Poli, E.; Porte, L.; Potzel, S.; Prisiazhniuk, D.; Puetterich, T.; Ramisch, M.; Rapson, C.; Rasmussen, J.; Raupp, G.; Refy, D.; Reich, M.; Reimold, F.; Ribeiro, T.; Riedl, R.; Rittich, D.; Rocchi, G.; Rodriguez-Ramos, M.; Rohde, V.; Ross, A.; Rott, M.; Rubel, M.; Ryan, D.; Ryter, F.; Saarelma, S.; Salewski, M.; Salmi, A.; Sanchis-Sanchez, L.; Santos, G.; Santos, J.; Sauter, O.; Scarabosio, A.; Schall, G.; Schmid, K.; Schmitz, O.; Schneider, P. A.; Schneller, M.; Schrittwieser, R.; Schubert, M.; Schwarz-Selinger, T.; Schweinzer, J.; Scott, B.; Sehmer, T.; Sertoli, M.; Shabbir, A.; Shalpegin, A.; Shao, L.; Sharapov, S.; Siccinio, M.; Sieglin, B.; Sigalov, A.; Silva, A.; Silva, C.; Simon, P.; Simpson, J.; Snicker, A.; Sommariva, C.; Sozzi, C.; Spolaore, M.; Stejner, M.; Stober, J.; Stobbe, F.; Stroth, U.; Strumberger, E.; Suarez, G.; Sugiyama, K.; Sun, H. -J.; Suttrop, W.; Szepesi, T.; Tal, B.; Tala, T.; Tardini, G.; Tardocchi, M.; Terranova, D.; Tierens, W.; Told, D.; Tudisco, O.; Trevisan, G.; Treutterer, W.; Trier, E.; Tripsky, M.; Valisa, M.; Valovic, M.; Vanovac, B.; Varela, P.; Varoutis, S.; Verdoolaege, G.; Vezinet, D.; Vianello, N.; Vicente, J.; Vierle, T.; Viezzer, E.; von Toussaint, U.; Wagner, D.; Wang, N.; Wang, X.; Weidl, M.; Weiland, M.; White, A. E.; Willensdorfer, M.; Wiringer, B.; Wischmeier, M.; Wolf, R.; Wolfrum, E.; Xiang, L.; Yang, Q.; Yang, Z.; Yu, Q.; Zagorski, R.; Zammuto, I.; Zarzoso, D.; Zhang, W.; van Zeeland, M.; Zehetbauer, T.; Zilker, M.; Zoletnik, S.; Zohm, H.; IST; VTT Technical Research Centre of Finland; Max Planck Inst Astrophys, Max Planck Society; Department of Applied Physics; TEC; JET EFDA, Culham Sci Ctr; Technische Universität München; Consorzio RFX; IRFM; Assoc EURATOM FZJ, Euratom, Julich Research Center, Forschungszentrum Julich, Inst Energy & Climate Res; University of Lorraine; ENEA; Istituto Fisica del Plasma "Piero Caldirola" (IFP-CNR); Swiss Federal Institute of Technology Lausanne; Innsbruck Medical University; Hungarian Academy of Sciences; Institute of Plasma Physics & Laser Microfusion (IFPiLM); Karlsruhe Institute of Technology; Eindhoven University of Technology; Swedish Research Council (VR); General Atomics & Affiliated Companies; University of Sevilla; University of Texas at Austin; Max Planck Comp & Data Facil; Ecole Polytechnique; Hochschule der Medien; Technical University of Denmark; Budapest University of Technology and Economics; University of California at Santa Barbara; School services, SCI; LPP-ERM/KMS EURATOM Association; Vienna University of Technology; Assoc EURATOM Hellen Republ, NCSR Demokritos; IPP; York University; CCFE Fusion Assoc; BSC; Univ Coll Cork UCC; Princeton University; Ghent University; Chinese Acad Sci, Chinese Academy of Sciences, Natl Astron Observ; Department of Radio Science and Engineering; Massachusetts Institute of Technology; Chinese Academy of Sciences; Univ Aix Marseille 1, Centre National de la Recherche Scientifique (CNRS), University of Aix-Marseille, Universite de Provence - Aix-Marseille I, UMR 6098, CNRSThe ASDEX Upgrade (AUG) programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. Since 2015, AUG is equipped with a new pair of 3-strap ICRF antennas, which were designed for a reduction of tungsten release during ICRF operation. As predicted, a factor two reduction on the ICRF-induced W plasma content could be achieved by the reduction of the sheath voltage at the antenna limiters via the compensation of the image currents of the central and side straps in the antenna frame. There are two main operational scenario lines in AUG. Experiments with low collisionality, which comprise current drive, ELM mitigation/suppression and fast ion physics, are mainly done with freshly boronized walls to reduce the tungsten influx at these high edge temperature conditions. Full ELM suppression and non-inductive operation up to a plasma current of I-p = 0.8 MA could be obtained at low plasma density. Plasma exhaust is studied under conditions of high neutral divertor pressure and separatrix electron density, where a fresh boronization is not required. Substantial progress could be achieved for the understanding of the confinement degradation by strong D puffing and the improvement with nitrogen or carbon seeding. Inward/outward shifts of the electron density profile relative to the temperature profile effect the edge stability via the pressure profile changes and lead to improved/decreased pedestal performance. Seeding and D gas puffing are found to effect the core fueling via changes in a region of high density on the high field side (HFSHD). The integration of all above mentioned operational scenarios will be feasible and naturally obtained in a large device where the edge is more opaque for neutrals and higher plasma temperatures provide a lower collisionality. The combination of exhaust control with pellet fueling has been successfully demonstrated. High divertor enrichment values of nitrogen E-N >= 10 have been obtained during pellet injection, which is a prerequisite for the simultaneous achievement of good core plasma purity and high divertor radiation levels. Impurity accumulation observed in the all-metal AUG device caused by the strong neoclassical inward transport of tungsten in the pedestal is expected to be relieved by the higher neoclassical temperature screening in larger devices.Item Overview of physics studies on ASDEX Upgrade(IOP PUBLISHING LTD, 2019-07-22) Meyer, H.; Angioni, C.; Albert, C. G.; Arden, Nils; Arredondo Parra, R.; Asunta, O.; De Baar, M.; Balden, M.; Bandaru, V.; Behler, K.; Bergmann, A.; Bernardo, J.; Bernert, M.; Biancalani, A.; Bilato, R.; Birkenmeier, G.; Blanken, T. C.; Bobkov, V.; Bock, A.; Bolzonella, T.; Bortolon, A.; Böswirth, B.; Bottereau, C.; Bottino, A.; Van Den Brand, H.; Brezinsek, S.; Brida, D.; Brochard, F.; Bruhn, C.; Buchanan, J.; Buhler, A.; Burckhart, A.; Camenen, Y.; Carlton, D.; Carr, M.; Carralero, D.; Castaldo, C.; Cavedon, M.; Cazzaniga, C.; Ceccuzzi, S.; Challis, C.; Chankin, A.; Chapman, S.; Cianfarani, C.; Clairet, F.; Coda, S.; Coelho, R.; Coenen, J. W.; Colas, L.; Conway, G. D.; Costea, S.; Coster, D. P.; Cote, T. B.; Creely, A.; Croci, G.; Cseh, G.; Czarnecka, A.; Cziegler, I.; D'Arcangelo, O.; David, P.; Day, C.; Delogu, R.; De Marné, P.; Denk, S. S.; Denner, P.; Dibon, M.; Di Siena, A.; Douai, D.; Drenik, A.; Drube, R.; Dunne, M.; Duval, B. P.; Dux, R.; Eich, T.; Elgeti, S.; Engelhardt, K.; Erdös, B.; Erofeev, I.; Esposito, B.; Fable, E.; Faitsch, M.; Fantz, U.; Faugel, H.; Faust, I.; Felici, F.; Ferreira, J.; Fietz, S.; Figuereido, A.; Fischer, R.; Ford, O.; Frassinetti, L.; Freethy, S.; Fröschle, M.; Fuchert, G.; Fuchs, J. C.; Fünfgelder, H.; Galazka, K.; Galdon-Quiroga, J.; Gallo, A.; Gao, Y.; Garavaglia, S.; Garcia-Carrasco, A.; Garcia-Munoz, M.; Geiger, B.; Giannone, L.; Gil, L.; Giovannozzi, E.; Gleason-González, C.; Glöggler, S.; Gobbin, M.; Görler, T.; Gomez Ortiz, I.; Gonzalez Martin, J.; Goodman, T.; Gorini, G.; Gradic, D.; Grater, A.; Granucci, G.; Greuner, H.; Griener, M.; Groth, M.; Gude, A.; Günter, Sibylle; Guimarais, L.; Haas, G.; Hakola, A. H.; Ham, C.; Happel, T.; Den Harder, N.; Harrer, G. F.; Harrison, J.; Hauer, V.; Hayward-Schneider, T.; Hegna, C. C.; Heinemann, B.; Heinzel, S.; Hellsten, T.; Henderson, S.; Hennequin, P.; Herrmann, A.; Heyn, M. F.; Heyn, E.; Hitzler, F.; Hobirk, J.; Höfler, K.; Hölzl, M.; Höschen, T.; Holm, J. H.; Hopf, C.; Hornsby, W. A.; Horvath, L.; Houben, A.; Huber, A.; Igochine, V.; Ilkei, T.; Ivanova-Stanik, I.; Jacob, W.; Jacobsen, A. S.; Janky, F.; Jansen Van Vuuren, A.; Jardin, A.; Jaulmes, F.; Jenko, F.; Jensen, T.; Joffrin, E.; Kasemann, C. P.; Kallenbach, A.; Kálvin, S.; Kantor, M.; Kappatou, A.; Kardaun, O.; Karhunen, J.; Kasilov, S.; Kazakov, Y.; Kernbichler, W.; Kirk, A.; Kjer Hansen, S.; Klevarova, V.; Kocsis, G.; Köhn, A.; Koubiti, M.; Krieger, K.; Krivska, A.; Kramer-Flecken, A.; Kudlacek, O.; Kurki-Suonio, T.; Kurzan, B.; Labit, B.; Lackner, K.; Laggner, F.; Lang, P. T.; Lauber, P.; Lebschy, A.; Leuthold, N.; Li, M.; Linder, O.; Lipschultz, B.; Liu, Fukun; Liu, Y. Q.; Lohs, A.; Lu, Z.; Luda Di Cortemiglia, T.; Luhmann, N. C.; Lunsford, R.; Lunt, T.; Lyssoivan, A.; Maceina, T.; Madsen, J.; Maggiora, R.; Maier, H.; Maj, O.; Mailloux, J.; Maingi, R.; Maljaars, E.; Manas, P.; Mancini, A.; Manhard, A.; Manso, M. E.; Mantica, P.; Mantsinen, M.; Manz, P.; Maraschek, M.; Martens, C.; Martin, P.; Marrelli, L.; Martitsch, A.; Mayer, M.; Mazon, D.; McCarthy, P. J.; McDermott, R.; Meister, H.; Medvedeva, A.; Merkel, R.; Merle, A.; Mertens, V.; Meshcheriakov, D.; Meyer, O.; Miettunen, J.; Milanesio, D.; Mink, F.; Mlynek, A.; Monaco, F.; Moon, C.; Nabais, F.; Nemes-Czopf, A.; Neu, G.; Neu, R.; Nielsen, A. H.; Nielsen, S. K.; Nikolaeva, V.; Nocente, M.; Noterdaeme, J. M.; Novikau, I.; Nowak, S.; Oberkofler, M.; Oberparleiter, M.; Ochoukov, R.; Odstrcil, T.; Olsen, J.; Orain, F.; Palermo, F.; Pan, O.; Papp, G.; Paradela Perez, I.; Pau, A.; Pautasso, G.; Penzel, F.; Petersson, P.; Pinzón Acosta, J.; Piovesan, P.; Piron, C.; Pitts, R.; Plank, U.; Plaum, B.; Ploeckl, B.; Plyusnin, V.; Pokol, G.; Poli, E.; Porte, L.; Potzel, S.; Prisiazhniuk, D.; Pütterich, T.; Ramisch, M.; Rasmussen, J.; Rattá, G. A.; Ratynskaia, S.; Raupp, G.; Ravera, G. L.; Réfy, D.; Reich, M.; Reimold, F.; Reiser, D.; Ribeiro, T.; Riesch, J.; Riedl, R.; Rittich, D.; Rivero-Rodriguez, J. F.; Rocchi, G.; Rodriguez-Ramos, M.; Rohde, V.; Ross, A.; Rott, M.; Rubel, M.; Ryan, D.; Ryter, F.; Saarelma, S.; Salewski, M.; Salmi, A.; Sanchis-Sanchez, L.; Santos, J.; Sauter, O.; Scarabosio, A.; Schall, G.; Schmid, K.; Schmitz, O.; Schneider, P. A.; Schrittwieser, R.; Schubert, M.; Schwarz-Selinger, T.; Schweinzer, J.; Scott, B.; Sehmer, T.; Seliunin, E.; Sertoli, M.; Shabbir, A.; Shalpegin, A.; Shao, Linming; Sharapov, S.; Sias, G.; Siccinio, M.; Sieglin, B.; Sigalov, A.; Silva, A.; Silva, C.; Silvagni, D.; Simon, P.; Simpson, J.; Smigelskis, E.; Snicker, A.; Sommariva, C.; Sozzi, C.; Spolaore, M.; Stegmeir, A.; Stejner, M.; Stober, J.; Stroth, U.; Strumberger, E.; Suarez, G.; Sun, H. J.; Suttrop, W.; Sytova, E.; Szepesi, T.; Tál, B.; Tala, T.; Tardini, G.; Tardocchi, M.; Teschke, M.; Terranova, D.; Tierens, W.; Thorén, E.; Told, D.; Tolias, P.; Tudisco, O.; Treutterer, W.; Trier, E.; Tripský, M.; Valisa, M.; Valovic, M.; Vanovac, B.; Van Vugt, D.; Varoutis, S.; Verdoolaege, G.; Vianello, N.; Vicente, J.; Vierle, T.; Viezzer, E.; Von Toussaint, U.; Wagner, D.; Wang, N.; Wang, Xianqu; Weiland, M.; White, A. E.; Wiesen, S.; Willensdorfer, M.; Wiringer, B.; Wischmeier, M.; Wolf, R.; Wolfrum, E.; Xiang, L.; Yang, Q.; Yang, Z.; Yu, Q.; Zagórski, R.; Zammuto, I.; Zhang, Wei; Van Zeeland, M.; Zehetbauer, T.; Zilker, M.; Zoletnik, S.; Zohm, H.; Department of Applied Physics; Fusion and Plasma Physics; Culham Science Centre; Max-Planck-Institut für Plasmaphysik; Dutch Institute for Fundamental Energy Research; University of Lisbon; Eindhoven University of Technology; National Research Council of Italy; Princeton University; French Alternative Energies and Atomic Energy Commission; Forschungszentrum Jülich; Université de Lorraine; CNRS; Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile; University of Warwick; Swiss Federal Institute of Technology Lausanne; University of Innsbruck; University of Wisconsin-Madison; Massachusetts Institute of Technology; Hungarian Academy of Sciences; Soltan Institute for Nuclear Studies; University of York; Karlsruhe Institute of Technology; KTH Royal Institute of Technology; University of Seville; University of Milano-Bicocca; Vienna University of Technology; Max-Planck Computing and Data Facility; General Atomics; Université Paris-Saclay; Graz University of Technology; Institut für Grenzflachenverfahrenstechnik und Plasmatechnologie; Danmarks Tekniske Universitet; Budapest University of Technology and Economics; Polish Academy of Sciences; Royal Military Academy; Ghent University; ITER; University of California, Davis; Polytechnic University of Turin; Barcelona Supercomputing Center; University College Cork; Chalmers University of Technology; University of Cagliari; VTT Technical Research Centre of Finland; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; CAS - Institute of Plasma Physics; Max Planck Institute for Plasma PhysicsThe ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.Item Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution(2017-06-28) Meyer, H; Eich, T.; Beurskens, M.; Coda, S; Hakola, A.; Martin, P; Adamek, J.; Agostini, M.; Aguiam, D.; Ahn, J; Aho-Mantila, L.; Akers, R.; Albanese, Raffaele; Aledda, R.; Alessi, E.; Allan, S.Y.; Alves, D.; Ambrosino, R.; Amicucci, L.; Anand, H.; Anastassiou, G.; Andrèbe, Y.; Angioni, C; Apruzzese, G.; Ariola, M.; Arnichand, H.; Arter, W.; Baciero, A.; Barnes, M.; Barrera, L.; Behn, R.; Bencze, A.; Bernardo, J; Bernert, M; Bettini, P.; Bilková, P.; Craig, W. W.; Birkenmeier, G; Bizarro, J. P. S.; Blanchard, P.; Blanken, T.; Bluteau, M.; Bobkov, V; Bogar, O.; Böhm, P.; Bolzonella, T; Boncagni, L.; Botrugno, A.; Bottereau, C; Bouquey, F.; Bourdelle, C.; Brémond, S.; Brezinsek, S; Brida, D.; Brochard, F; Buchanan, J.; Bufferand, H.; Buratti, P.; Cahyna, P.; Calabrò, G.; Camenen, Y; Caniello, R.; Cannas, B.; Canton, A.; Cardinali, A.; Carnevale, D.; Carr, C. M.; Carralero, D; Carvalho, P; Casali, L; Castaldo, C.; Castejón, F.; Castro, R.; Causa, F.; Cavazzana, R.; Cavedon, M; Cecconello, M.; Ceccuzzi, S.; Cesario, R.; Challis, C D.; Chapman, I.T.; Chapman, C.S.; Chernyshova, M.; Choi, D.; Cianfarani, C.; Ciraolo, G.; Citrin, J.; Clairet, F; Classen, I; Coelho, R.; Coenen, J.W.; Colas, L; Conway, G; Corre, Y.; Costea, S; Crisanti, F.; Navarro de la Cruz, Mariano; Cseh, G; Czarnecka, A; "D'Arcangelo", O.; De Angeli, M.; De Masi, G.; De Temmerman, G.; De Tommasi, G.; Decker, Joan; Delogu, R. S.; Dendy, R.; Denner, P; Di Troia, C.; Dimitrova, M.; "D'Inca", R; Dorić, V.; Douai, D; Drenik, A.; Dudson, B.; Dunai, D.; Dunne, M; Duval, B. P.; Easy, L.; Elmore, S.; Erdös, B.; Esposito, B; Fable, E; Faitsch, M.; Fanni, A.; Fedorczak, N.; Felici, F; Ferreira, J.; Février, O.; Ficker, O.; Fietz, S; Figini, L.; Figueiredo, A.; Fil, A.; Fishpool, G.; Fitzgerald, M.; Fontana, M.; Ford, O; Frassinetti, L.; Fridström, R.; Frigione, D.; Fuchert, G; Fuchs, C.; Furno-Palumbo, M.; Futatani, S.; Gabellieri, L.; Gałazka, K.; Galdon-Quiroga, J.; Galeani, S.; Gallart, D.; Gallo, Ariana; Galperti, Cristian; Gao, Y.; Garavaglia, S; Garcia, J.; Garcia-Carrasco, A.; Garcia Lopez, Javier; Garcia-Munoz, M; Gardarein, J. L.; Garzotti, L.; Gaspar, J.; Gauthier, E.; Geelen, P.; Geiger, B.; Ghendrih, P; Ghezzi, Francesco; Giacomelli, L; Giannone, L; Giovannozzi, E; Giroud, C.; Gleason González, C.; Gobbin, M.; Goodman, T.P.; Gorini, G.; Gospodarczyk, M.; Granucci, G; Gruber, M.; Gude, A; Guimarais, L; Guirlet, R; Gunn, J.P.; Hacek, P.; Hacquin, S.; Hall, P S; Ham, C.; Happel, T; Harrison, J; Harting, D.; Hauer, V; Havlickova, E.; Hellsten, T; Helou, W.; Henderson, S.; Hennequin, P; Heyn, M.F.; Hnat, B.; Hölzl, M.; Hogeweij, G.M.D.; Honoré, C.; Hopf, C; Horáček, J.; Hornung, G.; Csurgai-Horváth, László; Huang, Z.; Huber, A; Igitkhanov, J.; Igochine, V; Imrisek, M.; Innocente, P.; Ionita-Schrittwieser, C.; Isliker, H.; Ivanova-Stanik, I.; Jacobsen, A. S.; Jacquet, P.; Jakubowski, M.; Jardin, A.; Jaulmes, F; Jenko, F; Jensen, T; Jeppe Miki Busk, O.; Jessen, M.; Joffrin, E; Jones, Robert O.; Jonsson, T.; Kallenbach, A.; Kallinikos, N.; Kálvin, S.; Kappatou, A; Karhunen, J.; Karpushov, A.; Kasilov, S.; Kasprowicz, G.; Kendl, A.; Kernbichler, Winfried; Kim, D.; Kirk, A; Kjer, S.; Klimek, I.; Kocsis, G; Kogut, D; Komm, M.; Korsholm, S.B.; Koslowski, H.R.; Koubiti, M; Kovacic, J.; Kovarik, K.; Krawczyk, N.; Krbec, J.; Krieger, K.; Krivska, A; Kube, R.; Kudlacek, O.; Kurki-Suonio, T.; Labit, B.; Laggner, F. M.; Laguardia, L.; Lahtinen, A.; Lalousis, P.; Lang, P.; Lauber, P; Lazányi, N.; Lazaros, A; Le, H. B.; Lebschy, A; Leddy, J.; Lefévre, L.; Lehnen, M.; Leipold, F.; Lessig, A.; Leyland, M.; Li, L.; Liang, Y.; Lipschultz, B.; Liu, Y. Q.; Loarer, T.; Loarte, A.; Loewenhoff, T.; Lomanowski, B.; Loschiavo, V. P.; Lunt, T; Lupelli, I.; Lux, H.; Lyssoivan, A; Madsen, J; Maget, P.; Maggi, C.; Maggiora, R.; Magnussen, M. L.; Mailloux, J.; Maljaars, B.; Malygin, Anatoly; Mantica, P.; Mantsinen, M; Maraschek, M; Marchand, B.; Marconato, N.; Marini, C.; Marinucci, M.; Markovic, T.; Marocco, D.; Marrelli, Lionello; Martin, Y.; Martin-Solis, J. R.; Martitsch, A.; Mastrostefano, S.; Mattei, M.; Matthews, G.; Mavridis, M.; Mayoral, M.-L.; Mazon, D; McCarthy, P.; McAdams, R.; McArdle, G.; McClements, K.; McDermott, R; McMillan, Ben; Meisl, G.; Merle, A.; Meyer, O; Milanesio, D; Militello, F.; Miron, I. G.; Mitosinkova, K.; Mlynar, J.; Mlynek, A; Molina Hurtado, Daniel; Molina, P.; Monakhov, I.; Morales, José A.; Moreau, D.; Morel, Kaj P.N.; Moret, J. M.; Moro, A; Moulton, D.; Müller, H.W.; Nabais, F; Nardon, E.; Naulin, V.; Nemes-Czopf, A; Nespoli, F.; Neu, R; Nielsen, A.H.; Nielsen, Stefan Kragh; Nikolaeva, V; Nimb, S.; Nocente, M.; Nouailletas, R.; Nowak, S; Oberkofler, M.; Oberparleiter, M.; Ochoukov, R; Odstrčil, T.; Olsen, J.; Omotani, J.; "O'Mullane", M.G.; Orain, F.; Osterman, N.; Paccagnella, R.; Pamela, S.; Pangione, L.; Panjan, M.; Papp, G; Papřok, R.; Parail, V; Parra, F.I.; Pau, A; Pautasso, G; Pehkonen, S. P.; Pereira, Antonio; Perelli-Cippo, E.; Pericoli-Ridolfini, V.; Peterka, M.; Petersson, P.; Petrzilka, V.; Piovesan, P; Piron, C; Pironti, A.; Pisano, F.; Pisokas, T.; Pitts, R.; Ploumistakis, I.; Plyusnin, V; Pokol, G; Poljak, D.; Pölöskei, P.; Popovic, Z.; Pór, G.; Porte, L; Potzel, S; Predebon, I.; Preynas, Melanie; Primc, G.; Pucella, G.; Puiatti, M.E.; Pütterich, T.; Rack, M.; Ramogida, G.; Rapson, C; Rasmussen, Jens Juul; Rasmussen, J; Rattá, G. A.; Ratynskaia, S.; Ravera, G.; Réfy, D.; Reich, M; Reimerdes, H.; Reimold, F.; Reinke, M; Reiser, D.; Resnik, M.; Reux, C.; Ripamonti, D.; Rittich, D; Riva, G.; Rodriguez-Ramos, M.; Rohde, V; Rosato, J.; Ryter, F.; Saarelma, S.; Sabot, R.; Saint-Laurent, F.; Salewski, M; Salmi, A.; Samaddar, D.; Sanchis-Sanchez, L; Santos, J; Sauter, O.; Scannell, R.; Scheffer, M.; Schneider, M; Schneider, B.; Schneider, PA; Schneller, M; Schrittwieser, R; Schubert, M; Schweinzer, J; Seidl, J.; Sertoli, M.; Šesnić, S.; Shabbir, A.; Shalpegin, A; Shanahan, B.; Sharapov, S; Sheikh, U.; Sias, G; Sieglin, B.; Silva, C; Silva, A; Silva Fuglister, M.; Simpson, J.; Snicker, A.; Sommariva, C.; Sozzi, C; Spagnolo, S.; Spizzo, G.; Spolaore, M; Stange, Torsten; Stejner Pedersen, Morten; Stepanov, I.; Stober, J; Strand, P.; Šušnjara, A.; Suttrop, W; Szepesi, T; Tál, B.; Tala, T.; Tamain, P.; Tardini, G; Tardocchi, M; Teplukhina, A.; Terranova, D.; Testa, D.; Theiler, C.; Thornton, A.; Tolias, P.; Tophj, L.; Treutterer, W; Trevisan, G. L.; Tripsky, M; Tsironis, C.; Tsui, C.; Tudisco, O; Uccello, Andrea; Urban, Maximilian J.; Valisa, M.; Vallejos, P.; Valovic, M; van den Brand, H; Vanovac, B.; Varoutis, S; Vartanian, S.; Vega, J.; Verdoolaege, G.; Verhaegh, K.; Vermare, L.; Vianello, N; Vicente, J; Viezzer, E.; Vignitchouk, L.; Vijvers, W. A.J.; Villone, F.; Viola, B.; Vlahos, L.; Voitsekhovitch, I.; Vondráček, P.; Vu, N. M.T.; Wagner, D; Walkden, N.; Wang, Nan; Wauters, T; Weiland, M; Weinzettl, V.; Westerhof, E.; Wiesenberger, M.; Willensdorfer, M.; Wischmeier, M.; Wodniak, I.; Wolfrum, E.; Yadykin, D.; Zagórski, R.; Zammuto, I.; Zanca, P.; Zaplotnik, R.; Zestanakis, P.; Zhang, W.; Zoletnik, S.; Zuin, M.; Department of Applied Physics; Fusion and Plasma Physics; Culham Science Centre; Max Planck Institute for Plasma Physics; Swiss Federal Institute of Technology Lausanne; National Research Council of Italy; Czech Academy of Sciences; Instituto Superior Técnico Lisboa; French Alternative Energies and Atomic Energy Commission; University of Naples Federico II; University of Cagliari; University of Naples Parthenope; Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile; National Technical University of Athens; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; University of Oxford; EUROfusion Programme Management Unit; Wigner Research Centre for Physics; Eindhoven University of Technology; University of Strathclyde; Jülich Research Centre; Université de Lorraine; CNRS; University of Rome Tor Vergata; Uppsala University; University of Warwick; Soltan Institute for Nuclear Studies; Dutch Institute for Fundamental Energy Research; University of Innsbruck; ITER; University of Split; Jožef Stefan Institute; University of York; Budapest University of Technology and Economics; KTH Royal Institute of Technology; Barcelona Supercomputing Center; University of Seville; Karlsruhe Institute of Technology; University of Milano-Bicocca; Université Paris-Sud; Graz University of Technology; Royal Military Academy; Ghent University; Aristotle University of Thessaloniki; Technical University of Denmark; Vienna University of Technology; University of Helsinki; Foundation for Research and Technology - Hellas; Université Grenoble Alpes; Polytechnic University of Turin; University of Cassino and Southern Lazio; University College Cork; National Institute for Laser, Plasma and Radiation Physics; Chalmers University of Technology; VTT Technical Research Centre of Finland; Forschungszentrum Jülich; Durham UniversityIntegrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement . Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.Item Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification(2017-08-18) Brezinsek, S.; Coenen, J. W.; Schwarz-Selinger, T.; Schmid, K.; Kirschner, A.; Hakola, A.; Tabares, F. L.; Van Der Meiden, H. J.; Mayoral, M. L.; Reinhart, M.; Tsitrone, E.; Ahlgren, T.; Aints, M.; Airila, M.; Almaviva, S.; Alves, E.; Angot, T.; Anita, V.; Arredondo Parra, R.; Aumayr, F.; Balden, M.; Bauer, J.; Ben Yaala, M.; Berger, B. M.; Bisson, R.; Björkas, C.; Bogdanovic Radovic, I.; Borodin, D.; Bucalossi, J.; Butikova, J.; Butoi, B.; Čadež, I.; Caniello, R.; Caneve, L.; Cartry, G.; Catarino, N.; Čekada, M.; Ciraolo, G.; Ciupinski, L.; Colao, F.; Corre, Y.; Costin, C.; Craciunescu, T.; Cremona, A.; De Angeli, M.; De Castro, A.; Dejarnac, R.; Dellasega, D.; Dinca, P.; Dittmar, T.; Dobrea, C.; Hansen, P.; Drenik, A.; Eich, T.; Elgeti, S.; Falie, D.; Fedorczak, N.; Ferro, Y.; Fornal, T.; Fortuna-Zalesna, E.; Gao, L.; Gasior, P.; Gherendi, M.; Ghezzi, F.; Gosar; Greuner, H.; Grigore, E.; Grisolia, C.; Groth, M.; Gruca, M.; Grzonka, J.; Gunn, J. P.; Hassouni, K.; Heinola, K.; Höschen, T.; Huber, S.; Jacob, W.; Jepu, I.; Jiang, X.; Jogi, I.; Kaiser, A.; Karhunen, J.; Kelemen, M.; Köppen, M.; Koslowski, H. R.; Kreter, A.; Kubkowska, M.; Laan, M.; Laguardia, L.; Lahtinen, A.; Lasa, A.; Lazic, V.; Lemahieu, N.; Likonen, J.; Linke, J.; Litnovsky, A.; Linsmeier, Ch; Loewenhoff, T.; Lungu, C.; Lungu, M.; Maddaluno, G.; Maier, H.; Makkonen, T.; Manhard, A.; Marandet, Y.; Markelj, S.; Marot, L.; Martin, C.; Martin-Rojo, A. B.; Martynova, Y.; Mateus, R.; Matveev, D.; Mayer, M.; Meisl, G.; Mellet, N.; Michau, A.; Miettunen, J.; Möller, Sören; Morgan, T. W.; Mougenot, J.; Mozetič, M.; Nemanič, V.; Neu, R.; Nordlund, K.; Oberkofler, M.; Oyarzabal, E.; Panjan, M.; Pardanaud, C.; Paris, P.; Passoni, M.; Pegourie, B.; Pelicon, P.; Petersson, P.; Piip, K.; Pintsuk, G.; Pompilian, G. O.; Popa, G.; Porosnicu, C.; Primc, G.; Probst, M.; Räisänen, J.; Rasinski, M.; Ratynskaia, S.; Reiser, D.; Ricci, D.; Richou, M.; Riesch, J.; Riva, G.; Rosinski, M.; Roubin, P.; Rubel, M.; Ruset, C.; Safi, E.; Sergienko, G.; Siketic, Z.; Sima, A.; Spilker, B.; Stadlmayr, R.; Steudel, I.; Ström, P.; Tadic, T.; Tafalla, D.; Tale, I.; Terentyev, D.; Terra, A.; Tiron, V.; Tiseanu, I.; Tolias, P.; Tskhakaya, D.; Uccello, A.; Unterberg, B.; Uytdenhoven, I.; Vassallo, E.; Vavpetič, P.; Veis, P.; Velicu, I. L.; Vernimmen, J. W.M.; Voitkans, A.; Von Toussaint, U.; Weckmann, A.; Wirtz, M.; Založnik, A.; Zaplotnik, R.; Department of Applied Physics; Fusion and Plasma Physics; Jülich Research Centre; Max Planck Institute for Plasma Physics; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - CIEMAT; Dutch Institute for Fundamental Energy Research; Culham Science Centre; French Alternative Energies and Atomic Energy Commission; University of Helsinki; University of Tartu; VTT Technical Research Centre of Finland; Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile; Instituto Superior Técnico Lisboa; CNRS; Al. I. Cuza University; Vienna University of Technology; Swiss Federal Institute of Technology Lausanne; Ruder Boskovic Institute; University of Latvia; National Institute for Laser, Plasma and Radiation Physics; Jožef Stefan Institute; National Research Council of Italy; Warsaw University of Technology; Czech Academy of Sciences; Polytechnic University of Milan; Soltan Institute for Nuclear Studies; University of Innsbruck; KTH Royal Institute of Technology; Belgian Nuclear Research Centre; Comenius University BratislavaThe provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.Item A study on the density shoulder formation in the SOL of H-mode plasmas(Elsevier Science Publishers BV, 2017-08-01) Carralero, D.; Madsen, J.; Artene, S. A.; Bernert, M.; Birkenmeier, G.; Eich, T.; Fuchert, G.; Laggner, F.; Naulin, V.; Manz, P.; Vianello, N.; Wolfrum, E.; , EUROfusion MST1 Team; , ASDEX Upgrade Team; Max Planck Institute for Plasma Physics; Aalto University; Technical University of Munich; National Research Council of ItalyThe term “shoulder formation” refers to an increase of the density decay length in the scrape-off layer (SOL) observed in many tokamaks during L-mode operation when a density threshold is reached. Recent experiments in ASDEX Upgrade (AUG) and JET have shown that the shoulder forms when the divertor collisionality in the divertor electrically disconnects filaments from the wall. This leads to a transition from the sheath limited to the inertial regime and to an enhancement of radial particle transport, in good agreement with analytical models. In the present work, the validity of such a mechanism is investigated in the more reactor-relevant H-mode regime. For this, a cold divertor H-mode scenario is developed in AUG using different levels of D puffing and N seeding, in which inter-ELM filaments and SOL density profiles are measured. The basic relation between filament size and divertor collisionality is still valid in H-mode plasmas, albeit an additional condition related to the gas fueling rate has been found for the formation of the shoulder.