Aaltodoc - homepage
Communities & Collections
Browse Aaltodoc publication archive
EN | FI |
Log In
  1. Home
  2. Browse by Author

Browsing by Author "Corin, K. C."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Fundamental and flotation techniques assessing the effect of water quality on bubble-particle attachment of chalcopyrite and galena
    (2021-06-15) October, L. L.; Manono, M. S.; Wiese, J. G.; Schreithofer, N.; Corin, K. C.
    A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
    Bubble-particle attachment has been studied in the most fundamental way from as early as 1934 by bringing a bubble into contact with a flat mineral surface and since then, techniques measuring this interaction have advanced. Water quality within flotation will impact the bubble particle attachment and as more operations recycle their water on site, an understanding of this process becomes vital. This study uses an Automated Contact Time Apparatus (ACTA) to assess the effect of water quality on bubble-particle attachment of selected sulfide minerals; galena and chalcopyrite, from a fundamental perspective. Classical microflotation tests are complemented with collector adsorption and mineral potential under degrading water quality to validate the ACTA and gain an understanding of the effect of water quality on bubble-particle attachment as well as subsequent flotation. This investigation showed that the results from the ACTA qualitatively showed similar trends as that of the classical microflotation technique for measuring floatability, however the quantitively these methods showed very different results. Due to the dynamic nature of the microflotation technique it may be assumed that plant recovery will resemble the results from this technique closer than that of the ACTA. Furthermore, this investigation showed an increase in zeta potential of both minerals as the concentration of inorganic electrolytes in the water increased. It can thus be speculated that the increase in bubble-particle attachment with increasing ionic strength of synthetic plant water may be attributed to electrical double layer compression and particle agglomeration.
  • Loading...
    Thumbnail Image
    A fundamental study considering specific ion effects on the attachment of sulfide minerals to air bubbles
    (2020-06-01) October, L. L.; Corin, K. C.; Manono, M. S.; Schreithofer, N.; Wiese, J. G.
    A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
    Bubble-particle attachment is one of the most fundamental sub-processes in froth flotation. It is of critical importance in achieving the separation of value from non-value. This sub-process is affected by many factors such as the chemistry of the pulp, action of the reagents, hydrodynamics and operational factors. Understanding the effects of these factors on bubble-particle attachment is thus crucial as they may in turn affect the mineral recoveries attained. With the current drive towards zero effluent discharge on mineral concentrators water quality is an important factor to understand as it can change the pulp chemistry and subsequently affect mineral recoveries. This study thus considers the effect of specific ions found in process water on the bubble-particle attachment of chalcopyrite and galena. Adsorption studies and zeta potential measurements were conducted to interpret the outcomes of the bubble-particle attachment tests. Pulps containing Ca2+ resulted in lower bubble-particle attachment probability and recovery of galena and chalcopyrite. Adsorption studies complemented the bubble-particle attachment findings well and showed that in Ca2+ containing waters, less xanthate was adsorbed on both the chalcopyrite and galena surfaces. The zeta potential measurements showed an increase in mineral potential with Ca2+ containing salts compared to the very negative mineral potential in NaNO3. This work provides evidence of the passivation of the mineral surface with Ca2+; which hindered the adsorption of xanthate on the mineral surface in Ca2+ containing solutions and subsequently resulted in poor bubble-particle attachment.
Help | Open Access publishing | Instructions to convert a file to PDF/A | Errata instructions | Send Feedback
Aalto UniversityPrivacy notice | Cookie settings | Accessibility Statement | Aalto University Learning Centre