Browsing by Author "Cai, Y. Z."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
- The enigmatic double-peaked stripped-envelope SN 2023aew
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2024-09-01) Kangas, T.; Kuncarayakti, H.; Nagao, T.; Kotak, R.; Kankare, E.; Fraser, M.; Stevance, H.; Mattila, S.; Maeda, K.; Stritzinger, M.; Lundqvist, P.; Elias-Rosa, N.; Ferrari, L.; Folatelli, G.; Frohmaier, C.; Galbany, L.; Kawabata, M.; Koutsiona, E.; Müller-Bravo, T. E.; Piscarreta, L.; Pursiainen, M.; Singh, A.; Taguchi, K.; Teja, R. S.; Valerin, G.; Pastorello, A.; Benetti, S.; Cai, Y. Z.; Charalampopoulos, P.; Gutiérrez, C. P.; Kravtsov, T.; Reguitti, A.We present optical and near-infrared photometry and spectroscopy of SN 2023aew and our findings on its remarkable properties. This event, initially resembling a Type IIb supernova (SN), rebrightens dramatically ~90 d after the first peak, at which time its spectrum transforms into that of a SN Ic. The slowly evolving spectrum specifically resembles a post-peak SN Ic with relatively low line velocities even during the second rise. The second peak, reached 119 d after the first peak, is both more luminous (Mr = -18.75±0.04 mag) and much broader than those of typical SNe Ic. Blackbody fits to SN 2023aew indicate that the photosphere shrinks almost throughout its observed evolution, and the second peak is caused by an increasing temperature. Bumps in the light curve after the second peak suggest interaction with circumstellar matter (CSM) or possibly accretion. We consider several scenarios for producing the unprecedented behavior of SN 2023aew. Two separate SNe, either unrelated or from the same binary system, require either an incredible coincidence or extreme fine-tuning. A pre-SN eruption followed by a SN requires an extremely powerful, SN-like eruption (consistent with ~1051 erg) and is also disfavored. We therefore consider only the first peak a true stellar explosion. The observed evolution is difficult to reproduce if the second peak is dominated by interaction with a distant CSM shell. A delayed internal heating mechanism is more likely, but emerging embedded interaction with a CSM disk should be accompanied by CSM lines in the spectrum, which are not observed, and is difficult to hide long enough. A magnetar central engine requires a delayed onset to explain the long time between the peaks. Delayed fallback accretion onto a black hole may present the most promising scenario, but we cannot definitively establish the power source. - The evolution of luminous red nova at 2017jfs in NGC4470?
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä(2019-01-01) Pastorello, A.; Chen, T. W.; Cai, Y. Z.; Morales-Garoffolo, A.; Cano, Z.; Mason, E.; Barsukova, E. A.; Benetti, S.; Berton, M.; Bose, S.; Bufano, F.; Callis, E.; Cannizzaro, G.; Cartier, R.; Chen, Ping; Dong, Subo; Dyrbye, S.; Elias-Rosa, N.; Flörs, A.; Fraser, M.; Geier, S.; Goranskij, V. P.; Kann, D. A.; Kuncarayakti, H.; Onori, F.; Reguitti, A.; Reynolds, T.; Losada, I. R.; Sagués Carracedo, A.; Schweyer, T.; Smartt, S. J.; Tatarnikov, A. M.; Valeev, A. F.; Vogl, C.; Wevers, T.; De Ugarte Postigo, A.; Izzo, L.; Inserra, C.; Kankare, E.; Maguire, K.; Smith, K. W.; Stalder, B.; Tartaglia, L.; Thöne, C. C.; Valerin, G.; Young, D. R.We present the results of our photometric and spectroscopic follow-up of the intermediate-luminosity optical transient AT 2017jfs. At peak, the object reaches an absolute magnitude of Mg = -15:46 ± 0:15 mag and a bolometric luminosity of 5:5 × 1041 erg s-1. Its light curve has the doublepeak shape typical of luminous red novae (LRNe), with a narrow first peak bright in the blue bands, while the second peak is longer-lasting and more luminous in the red and near-infrared (NIR) bands. During the first peak, the spectrum shows a blue continuum with narrow emission lines of H and Fe II. During the second peak, the spectrum becomes cooler, resembling that of a K-type star, and the emission lines are replaced by a forest of narrow lines in absorption. About 5 months later, while the optical light curves are characterized by a fast linear decline, the NIR ones show a moderate rebrightening, observed until the transient disappears in solar conjunction. At these late epochs, the spectrum becomes reminiscent of that of M-type stars, with prominent molecular absorption bands. The late-time properties suggest the formation of some dust in the expanding common envelope or an IR echo from foreground pre-existing dust. We propose that the object is a common-envelope transient, possibly the outcome of a merging event in a massive binary, similar to NGC4490-2011OT1.